Klinische Neurophysiologie 2013; 44(01): 28-32
DOI: 10.1055/s-0032-1316305
Posterpreisträger der DGKN-Jahrestagung 2012
© Georg Thieme Verlag KG Stuttgart · New York

Functional Integration of Parietal Lobe Activity in Early Alzheimer’s Disease: Findings and Implications

Funktionelle Integration der Aktivität des Parietallappen im frühen Stadium der Alzheimer-Erkrankung: Ergebnisse und Implikationen
H.I. L. Jacobs
1   Cognitive Neuroscience, Institute of Neuroscience and Medicine-3, Research Centre Jülich, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
10 September 2012 (online)

 
  • References

  • 1 Cummings JL. Alzheimer’s disease. The New England journal of medicine 2004; 351: 56-67
  • 2 Barkhof F, Polvikoski TM, van Straaten EC et al. The significance of medial temporal lobe atrophy: a postmortem MRI study in the very old. Neurology 2007; 69: 1521-1527
  • 3 Echavarri C, Aalten P, Uylings HB et al. Atrophy in the parahippocampal gyrus as an early biomarker of Alzheimer’s disease. Brain structure & function 2010; 215: 265-271
  • 4 Scheltens P, Leys D, Barkhof F et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 1992; 55: 967-972
  • 5 Visser PJ, Scheltens P, Verhey FR et al. Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. Journal of neurology 1999; 246: 477-485
  • 6 Visser PJ, Verhey FR, Hofman PA et al. Medial temporal lobe atrophy predicts Alzheimer’s disease in patients with minor cognitive impairment. J Neurol Neurosurg Psychiatry 2002; 72: 491-497
  • 7 Rusinek H, Endo Y, De Santi S et al. Atrophy rate in medial temporal lobe during progression of Alzheimer disease. Neurology 2004; 63: 2354-2359
  • 8 Fleisher AS, Sun S, Taylor C et al. Volumetric MRI vs clinical predictors of Alzheimer disease in mild cognitive impairment. Neurology 2008; 70: 191-199
  • 9 Jhoo JH, Lee DY, Choo IH et al. Discrimination of normal aging, MCI and AD with multimodal imaging measures on the medial temporal lobe. Psychiatry Res 2010; 183: 237-243
  • 10 Jacobs HIL, Van Boxtel MP, van der Elst W et al. Increasing the Diagnostic Accuracy of Medial Temporal Lobe Atrophy in Alzheimer’s Disease. J Alzheimers Dis 2011; 25: 477-490
  • 11 Geerlings MI, den Heijer T, Koudstaal PJ et al. History of depression, depressive symptoms, and medial temporal lobe atrophy and the risk of Alzheimer disease. Neurology 2008; 70: 1258-1264
  • 12 Greenwald BS, Kramer-Ginsberg E, Bogerts B et al. Qualitative magnetic resonance imaging findings in geriatric depression. Possible link between later-onset depression and Alzheimer’s disease?. Psychological medicine 1997; 27: 421-431
  • 13 Kaye JA, Swihart T, Howieson D et al. Volume loss of the hippocampus and temporal lobe in healthy elderly persons destined to develop dementia. Neurology 1997; 48: 1297-1304
  • 14 Raz N, Lindenberger U, Rodrigue KM et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 2005; 15: 1676-1689
  • 15 Kobayashi Y, Amaral DG. Macaque monkey retrosplenial cortex: II. Cortical afferents. The Journal of comparative neurology 2003; 466: 48-79
  • 16 Kobayashi Y, Amaral DG. Macaque monkey retrosplenial cortex: III. Cortical efferents. The Journal of comparative neurology 2007; 502: 810-833
  • 17 Vann SD, Aggleton JP, Maguire EA. What does the retrosplenial cortex do?. Nature reviews Neuroscience 2009; 10: 792-802
  • 18 Aggleton JP. Understanding retrosplenial amnesia: insights from animal studies. Neuropsychologia 2010; 48: 2328-2338
  • 19 Maguire EA. The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. Scand J Psychol 2001; 42: 225-238
  • 20 Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 1991; 82: 239-259
  • 21 McKee AC, Au R, Cabral HJ et al. Visual association pathology in preclinical Alzheimer disease. J Neuropathol Exp Neurol 2006; 65: 621-630
  • 22 Jacobs HIL, Van Boxtel MPJ, Jolles J et al. Parietal cortex matters in Alzheimer’s disease: an overview of structural, functional and metabolic findings. Neurosci Biobehav Rev 2012; 36: 297-309
  • 23 Matsuda H. Role of neuroimaging in Alzheimer’s disease, with emphasis on brain perfusion SPECT. J Nucl Med 2007; 48: 1289-1300
  • 24 Nobili F, Frisoni GB, Portet F et al. in subtypes of mild cognitive impairment. Findings from the DESCRIPA multicenter study. Journal of neurology 2008; 255: 1344-1353
  • 25 Chetelat G, Desgranges B, de la Sayette V et al. Mild cognitive impairment: Can FDG-PET predict who is to rapidly convert to Alzheimer’s disease?. Neurology 2003; 60: 1374-1377
  • 26 Drzezga A, Lautenschlager N, Siebner H et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. European journal of nuclear medicine and molecular imaging 2003; 30: 1104-1113
  • 27 Ishii K, Sasaki H, Kono AK et al. Comparison of gray matter and metabolic reduction in mild Alzheimer’s disease using FDG-PET and voxel-based morphometric MR studies. European journal of nuclear medicine and molecular imaging 2005; 32: 959-963
  • 28 Buckner RL, Snyder AZ, Shannon BJ et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 2005; 25: 7709-7717
  • 29 Dubois B, Feldman HH, Jacova C et al. Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 2010; 9: 1118-1127
  • 30 Sperling RA, Dickerson BC, Pihlajamaki M et al. Functional alterations in memory networks in early Alzheimer’s disease. Neuromolecular medicine 2010; 12: 27-43
  • 31 Bokde AL, Lopez-Bayo P, Born C et al. Functional abnormalities of the visual processing system in subjects with mild cognitive impairment: an fMRI study. Psychiatry Res 2008; 163: 248-259
  • 32 Bokde AL, Lopez-Bayo P, Born C et al. Alzheimer disease: functional abnormalities in the dorsal visual pathway. Radiology 2010; 254: 219-226
  • 33 Prvulovic D, Hubl D, Sack AT et al. Functional imaging of visuospatial processing in Alzheimer’s disease. Neuroimage 2002; 17: 1403-1414
  • 34 Vannini P, Almkvist O, Dierks T et al. Reduced neuronal efficacy in progressive mild cognitive impairment: a prospective fMRI study on visuospatial processing. Psychiatry Res 2007; 156: 43-57
  • 35 Friston K. Functional integration and inference in the brain. Prog Neurobiol 2002; 68: 113-143
  • 36 Roebroeck A, Formisano E, Goebel R. Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 2005; 25: 230-242
  • 37 Matsuda H, Kitayama N, Ohnishi T et al. Longitudinal evaluation of both morphologic and functional changes in the same individuals with Alzheimer’s disease. J Nucl Med 2002; 43: 304-311
  • 38 Petersen RC, Negash S. Mild cognitive impairment: an overview. CNS spectrums 2008; 13: 45-53
  • 39 Jacobs HIL, Gronenschild EHBM, Evers EAT et al. Visuospatial processing in early Alzheimer’s disease: a multimodal neuroimaging study. Cortex 2012; accepted
  • 40 Jacobs HIL, Van Boxtel MPJ, Heinecke A et al. Functional integration of parietal lobe activity in early Alzheimer’s disease. Neurology 2012; 78: 352-360
  • 41 Peters M, Battista C. Applications of mental rotation figures of the Shepard and Metzler type and description of a mental rotation stimulus library. Brain Cogn 2008; 66: 260-264
  • 42 Verfaillie K, Boutsen L. A corpus of 714 full-color images of depth-rotated objects. Perception & psychophysics 1995; 57: 925-961
  • 43 Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophysical journal 1994; 66: 259-267
  • 44 Salat DH, Tuch DS, van der Kouwe AJ et al. White matter pathology isolates the hippocampal formation in Alzheimer’s disease. Neurobiol Aging 2010; 31: 244-256
  • 45 Andrews-Hanna JR, Reidler JS, Sepulcre J et al. Functional-anatomic fractionation of the brain’s default network. Neuron 2010; 65: 550-562
  • 46 Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 2008; 1124: 1-38
  • 47 Greicius MD, Krasnow B, Reiss AL et al. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 2003; 100: 253-258
  • 48 Raichle ME, MacLeod AM, Snyder AZ et al. A default mode of brain function. Proc Natl Acad Sci USA 2001; 98: 676-682
  • 49 Wermke M, Sorg C, Wohlschlager AM et al. A new integrative model of cerebral activation, deactivation and default mode function in Alzheimer’s disease. European journal of nuclear medicine and molecular imaging 2008; 35 (Suppl. 01) S12-S24
  • 50 Bookheimer SY, Strojwas MH, Cohen MS et al. Patterns of brain activation in people at risk for Alzheimer’s disease. The New England journal of medicine 2000; 343: 450-456
  • 51 Kondo M, Imahori Y, Mori S et al. Aberrant plasticity in Alzheimer’s disease. Neuroreport 1999; 10: 1481-1484
  • 52 Dickerson BC, Sperling RA. Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer’s disease: insights from functional MRI studies. Neuropsychologia 2008; 46: 1624-1635
  • 53 Dickerson BC, Sperling RA. Large-scale functional brain network abnormalities in Alzheimer’s disease: insights from functional neuroimaging. Behavioural neurology 2009; 21: 63-75