Klin Monbl Augenheilkd 2012; 229(09): 905-909
DOI: 10.1055/s-0032-1314988
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Hereditäre Makuladystrophien in der Differenzialdiagnose der AMD

Hereditary Macular Dystrophies in Differential Diagnosis of AMD
A. B. Renner
1   Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Regensburg
,
H. Jägle
1   Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Regensburg
› Author Affiliations
Further Information

Publication History

eingereicht 15 April 2012

akzeptiert 30 April 2012

Publication Date:
25 July 2012 (online)

Zusammenfassung

Hereditäre Makuladystrophien können sich in jedem Lebensalter manifestieren und auch nach dem 50. Lebensjahr Ursache von Sehstörungen sein. Viele Makuladystrophien verändern im Krankheitsverlauf ihr Erscheinungsbild am Fundus und präsentieren sich im Spätstadium nicht selten als zentrale chorioretinale Atrophie. Eine Abgrenzung zur trockenen AMD kann dann mittels alleiniger Funduskopie äußerst schwierig oder nicht mehr möglich sein. Eine CNV kann durchaus auch bei Makuladystrophien auftreten und verleitet schnell zur Annahme einer feuchten AMD. Weitere, sehr hilfreiche diagnostische Maßnahmen zur Vermeidung einer Fehldiagnose sind vor allem die bildgebenden Verfahren Fundusautofluoreszenz und optische Kohärenztomografie, die für die Makuladystrophien oft typische Befunde liefern und somit eine Abgrenzung zur AMD erleichtern. Dieser Artikel gibt eine Übersicht über speziell die differenzialdiagnostisch zur AMD wichtigen Makuladystrophien.

Abstract

The onset of hereditary macular dystrophies may occur at all ages and may be the origin of visual disturbances even after the age of 50 years. During the disease course, many macular dystrophies change their fundus appearance, finally leading to a geographic chorioretinal atrophy making it difficult to distinguish the disease form dry AMD. Furthermore, a macular dystrophy associated CNV may be misleading to the diagnosis of wet AMD. Additional fundus autofluorescence and optical coherence tomography imaging are very valuable for delineating macular dystrophies from AMD. In this paper we provide an overview of the important hereditary macular dystrophies which should be considered as differential diagnoses for AMD.

 
  • Literatur

  • 1 van Leeuwen R, Klaver CC, Vingerling JR et al. Epidemiology of age-related maculopathy: a review. Eur J Epidemiol 2003; 18: 845-854
  • 2 Friedman DS, OʼColmain BJ, Munoz B et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 2004; 122: 564-572
  • 3 de Jong PT. Age-related macular degeneration. N Engl J Med 2006; 355: 1474-1485
  • 4 Kellner U, Jandeck C, Kraus H et al. [Hereditary macular dystrophies]. Ophthalmologe 1998; 95: 597-601
  • 5 Kellner U, Kellner S, Renner AB et al. [Evidence-based diagnostic approach to inherited retinal dystrophies 2009]. Klin Monatsbl Augenheilkd 2009; 226: 999-1011
  • 6 Blacharski PA. Fundus flavimaculatus. In: Newsom DA, Hrsg. Retinal Dystrophies and Degenerations. New York: Raven Press; 1988: 135-159
  • 7 Burke TR, Tsang SH, Zernant J et al. Familial discordance in Stargardt disease. Mol Vis 2012; 18: 227-233
  • 8 Lois N, Holder GE, Fitzke FW et al. Intrafamilial variation of phenotype in Stargardt macular dystrophy-Fundus flavimaculatus. Invest Ophthalmol Vis Sci 1999; 40: 2668-2675
  • 9 Bui TV, Han Y, Radu RA et al. Characterization of native retinal fluorophores involved in biosynthesis of A2E and lipofuscin-associated retinopathies. J Biol Chem 2006; 281: 18112-18119
  • 10 Holz FG. [Autofluorescence imaging of the macula]. Ophthalmologe 2001; 98: 10-18
  • 11 von Rückmann A, Fitzke FW, Bird AC. In vivo fundus autofluorescence in macular dystrophies. Arch Ophthalmol 1997; 115: 609-615
  • 12 Kim SR, Jang YP, Jockusch S et al. The all-trans-retinal dimer series of lipofuscin pigments in retinal pigment epithelial cells in a recessive Stargardt disease model. Proc Natl Acad Sci USA 2007; 104: 19273-19278
  • 13 Kellner S, Kellner U, Weber BH et al. Lipofuscin- and melanin-related fundus autofluorescence in patients with ABCA4-associated retinal dystrophies. Am J Ophthalmol 2009; 147: 895-902 902.e1
  • 14 Gass JD. A clinicopathologic study of a peculiar foveomacular dystrophy. Trans Am Ophthalmol Soc 1974; 72: 139-156
  • 15 Renner AB, Tillack H, Kraus H et al. [Clinical diagnostic prerequisites for adult vitelliform macular dystrophy]. Ophthalmologe 2004; 101: 895-900
  • 16 Querques G, Forte R, Querques L et al. Natural course of adult-onset foveomacular vitelliform dystrophy: a spectral-domain optical coherence tomography analysis. Am J Ophthalmol 2011; 152: 304-313
  • 17 Montero JA, Ruiz-Moreno JM, De La Vega C. Intravitreal bevacizumab for adult-onset vitelliform dystrophy: a case report. Eur J Ophthalmol 2007; 17: 983-986
  • 18 Kandula S, Zweifel S, Freund KB. Adult-onset vitelliform detachment unresponsive to monthly intravitreal ranibizumab. Ophthalmic Surg Lasers Imaging 2010; 41 (Suppl) S81-S84
  • 19 Lee JY, Lim J, Chung H et al. Spectral domain optical coherence tomography in a patient with adult-onset vitelliform dystrophy treated with intravitreal bevacizumab. Ophthalmic Surg Lasers Imaging 2009; 40: 319-321
  • 20 Gallego-Pinazo R, Dolz-Marco R, Pardo-Lopez D et al. Primary intravitreal ranibizumab for adult-onset foveomacular vitelliform dystrophy. Graefes Arch Clin Exp Ophthalmol 2011; 249: 455-458
  • 21 Renner AB, Tillack H, Kraus H et al. Late onset is common in best macular dystrophy associated with VMD2 gene mutations. Ophthalmology 2005; 112: 586-592
  • 22 Booij JC, Boon CJ, van Schooneveld MJ et al. Course of visual decline in relation to the Best1 genotype in vitelliform macular dystrophy. Ophthalmology 2010; 117: 1415-1422
  • 23 Wabbels B, Preising MN, Kretschmann U et al. Genotype-phenotype correlation and longitudinal course in ten families with Best vitelliform macular dystrophy. Graefes Arch Clin Exp Ophthalmol 2006; 244: 1453-1466
  • 24 Boon CJ, Jeroen Klevering B, Keunen JE et al. Fundus autofluorescence imaging of retinal dystrophies. Vision Res 2008; 48: 2569-2577
  • 25 Ferrara DC, Costa RA, Tsang S et al. Multimodal fundus imaging in Best vitelliform macular dystrophy. Graefes Arch Clin Exp Ophthalmol 2010; 248: 1377-1386
  • 26 Querques G, Regenbogen M, Quijano C et al. High-definition optical coherence tomography features in vitelliform macular dystrophy. Am J Ophthalmol 2008; 146: 501-507
  • 27 Leu J, Schrage NF, Degenring RF. Choroidal neovascularisation secondary to Bestʼs disease in a 13-year-old boy treated by intravitreal bevacizumab. Graefes Arch Clin Exp Ophthalmol 2007; 245: 1723-1725
  • 28 Querques G, Bocco MC, Soubrane G et al. Intravitreal ranibizumab (Lucentis) for choroidal neovascularization associated with vitelliform macular dystrophy. Acta Ophthalmol 2008; 86: 694-695
  • 29 Rishi E, Rishi P, Mahajan S. Intravitreal bevacizumab for choroidal neovascular membrane associated with Bestʼs vitelliform dystrophy. Indian J Ophthalmol 2010; 58: 160-162
  • 30 Heidary F, Hitam WH, Ngah NF et al. Intravitreal ranibizumab for choroidal neovascularization in Bestʼs vitelliform macular dystrophy in a 6-year-old boy. J Pediatr Ophthalmol Strabismus 2011; 48 Online: e19-22 DOI: 10.3928/01913913-20110308-02.
  • 31 Iannaccone A, Kerr NC, Kinnick TR et al. Autosomal recessive best vitelliform macular dystrophy: report of a family and management of early-onset neovascular complications. Arch Ophthalmol 2011; 129: 211-217
  • 32 Perol J, Wolff B, Sahel JA et al. [Intravitreal bevacizumab treatment for choroidal neovascularization in Bestʼs disease]. J Fr Ophtalmol 2011; 34: 281-286
  • 33 Mandal S, Sinha S, Venkatesh P et al. Intravitreal bevacizumab in choroidal neovascularization associated with Bestʼs vitelliform dystrophy. Indian J Ophthalmol 2011; 59: 262-263
  • 34 Chhablani J, Jalali S. Intravitreal bevacizumab for choroidal neovascularization secondary to Best vitelliform macular dystrophy in a 6-year-old child. Eur J Ophthalmol 2011; DOI: 10.5301/ejo.5000095.
  • 35 Smailhodzic D, Fleckenstein M, Theelen T et al. Central areolar choroidal dystrophy (CACD) and age-related macular degeneration (AMD): differentiating characteristics in multimodal imaging. Invest Ophthalmol Vis Sci 2011; 52: 8908-8918
  • 36 Boon CJ, Klevering BJ, Cremers FP et al. Central areolar choroidal dystrophy. Ophthalmology 2009; 116: 771-782 782.e1
  • 37 Keilhauer CN, Meigen T, Weber BH. Clinical findings in a multigeneration family with autosomal dominant central areolar choroidal dystrophy associated with an Arg195Leu mutation in the peripherin/RDS gene. Arch Ophthalmol 2006; 124: 1020-1027
  • 38 Renner AB, Fiebig BS, Weber BH et al. Phenotypic variability and long-term follow-up of patients with known and novel PRPH2/RDS gene mutations. Am J Ophthalmol 2009; 147: 518-530.e1
  • 39 Gerth C, Zawadzki RJ, Werner JS et al. Retinal microstructure in patients with EFEMP1 retinal dystrophy evaluated by Fourier domain OCT. Eye (Lond) 2009; 23: 480-483
  • 40 Boon CJ, den Hollander AI, Hoyng CB et al. The spectrum of retinal dystrophies caused by mutations in the peripherin/RDS gene. Prog Retin Eye Res 2008; 27: 213-235
  • 41 Francis PJ, Schultz DW, Gregory AM et al. Genetic and phenotypic heterogeneity in pattern dystrophy. Br J Ophthalmol 2005; 89: 1115-1119
  • 42 de Jong PT, Delleman JW. Pigment epithelial pattern dystrophy. Four different manifestations in a family. Arch Ophthalmol 1982; 100: 1416-1421