Semin Neurol 2011; 31(5): 519-530
DOI: 10.1055/s-0031-1299790
© Thieme Medical Publishers

The Genetics of Mitochondrial Disease

Ryan L. Davis1 , Carolyn M. Sue1 , 2
  • 1Neurogenetics Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, and University of Sydney
  • 2Department of Neurology, Royal North Shore Hospital, Sydney, Australia
Further Information

Publication History

Publication Date:
21 January 2012 (online)

ABSTRACT

The discovery that defects in mitochondria and mitochondrial DNA could cause human disease has led to the development of a rapidly expanding group of disorders known as mitochondrial disease. Mitochondrial disease is so named because of the common feature of impaired mitochondrial function. The main function of the mitochondrion is to produce energy for the cell in the form of ATP. ATP is generated by the respiratory chain, a series of complex proteins that are located in the mitochondrial membrane, and are encoded for by both the mitochondrial and nuclear genomes. Consequently, mitochondrial disease can be caused by mutations in either mitochondrial or nuclear DNA. Given the distribution of mitochondria throughout the body, the specific properties of mitochondrial DNA, and the mitochondrion's dependence on nuclear genes for its normal function, the clinical presentation of mitochondrial disease can be highly variable. Thus, familiarity with typical clinical presentations and knowledge of the genes that contribute to mitochondrial function will aid the clinician in the recognition, diagnosis, and management of patients with this group of diverse disorders.

REFERENCES

  • 1 Anderson S, Bankier A T, Barrell B G et al.. Sequence and organization of the human mitochondrial genome.  Nature. 1981;  290 (5806) 457-465
  • 2 Sue C M. Mitochondrial disease: recognising more than just the tip of the iceberg.  Med J Aust. 2010;  193 (4) 195-196
  • 3 Luft R, Ikkos D, Palmieri G, Ernster L, Afzelius B. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study.  J Clin Invest. 1962;  41 (9) 1776-1804
  • 4 DiMauro S, Bonilla E, Lee C P et al.. Luft's disease. Further biochemical and ultrastructural studies of skeletal muscle in the second case.  J Neurol Sci. 1976;  27 (2) 217-232
  • 5 Engel W K, Cunningham G G. Rapid examination of muscle tissue. An improved trichrome method for fresh-frozen biopsy sections.  Neurology. 1963;  13 919-923
  • 6 Shy G M, Gonatas N K. Human myopathy with giant abnormal mitochondria.  Science. 1964;  145 (3631) 493-496
  • 7 Shy G M, Gonatas N K, Perez M. Two childhood myopathies with abnormal mitochondria. I. Megaconial myopathy. II. Pleoconial myopathy.  Brain. 1966;  89 (1) 133-158
  • 8 Holt I J, Harding A E, Morgan-Hughes J A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies.  Nature. 1988;  331 (6158) 717-719
  • 9 Wallace D C, Singh G, Lott M T et al.. Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy.  Science. 1988;  242 (4884) 1427-1430
  • 10 Ruiz-Pesini E, Lott M T, Procaccio V et al.. An enhanced MITOMAP with a global mtDNA mutational phylogeny.  Nucleic Acids Res. 2007;  35 (Suppl 1) D823-D828
  • 11 Schwartz M, Vissing J. Paternal inheritance of mitochondrial DNA.  N Engl J Med. 2002;  347 (8) 576-580
  • 12 Chomyn A, Meola G, Bresolin N, Lai S T, Scarlato G, Attardi G. In vitro genetic transfer of protein synthesis and respiration defects to mitochondrial DNA-less cells with myopathy-patient mitochondria.  Mol Cell Biol. 1991;  11 (4) 2236-2244
  • 13 Petruzzella V, Moraes C T, Sano M C, Bonilla E, DiMauro S, Schon E A. Extremely high levels of mutant mtDNAs co-localize with cytochrome c oxidase-negative ragged-red fibers in patients harboring a point mutation at nt 3243.  Hum Mol Genet. 1994;  3 (3) 449-454
  • 14 DiMauro S. Mitochondrial encephalomyopathies. In: Rosenberg R N, Prusiner S B, DiMauro S, Barchi R L, eds. The Molecular and Genetic Basis of Neurological Disease. Boston, MA: Butterworth-Heinemann; 1993: 665-694
  • 15 Hammans S R, Sweeney M G, Brockington M et al.. The mitochondrial DNA transfer RNA(Lys)A—> G(8344) mutation and the syndrome of myoclonic epilepsy with ragged red fibres (MERRF). Relationship of clinical phenotype to proportion of mutant mitochondrial DNA.  Brain. 1993;  116 (Pt 3) 617-632
  • 16 Hammans S R, Sweeney M G, Hanna M G, Brockington M, Morgan-Hughes J A, Harding A E. The mitochondrial DNA transfer RNALeu(UUR) A—> G(3243) mutation. A clinical and genetic study.  Brain. 1995;  118 (Pt 3) 721-734
  • 17 Sue C M, Bruno C, Andreu A L et al.. Infantile encephalopathy associated with the MELAS A3243G mutation.  J Pediatr. 1999;  134 (6) 696-700
  • 18 Chinnery P F, Taylor D J, Brown D T, Manners D, Styles P, Lodi R. Very low levels of the mtDNA A3243G mutation associated with mitochondrial dysfunction in vivo.  Ann Neurol. 2000;  47 (3) 381-384
  • 19 Schon E A, Rizzuto R, Moraes C T, Nakase H, Zeviani M, DiMauro S. A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA.  Science. 1989;  244 (4902) 346-349
  • 20 Rocher C, Letellier T, Copeland W C, Lestienne P. Base composition at mtDNA boundaries suggests a DNA triple helix model for human mitochondrial DNA large-scale rearrangements.  Mol Genet Metab. 2002;  76 (2) 123-132
  • 21 Shanske S, Tang Y, Hirano M et al.. Identical mitochondrial DNA deletion in a woman with ocular myopathy and in her son with Pearson syndrome.  Am J Hum Genet. 2002;  71 (3) 679-683
  • 22 Poulton J, Deadman M E, Gardiner R M. Duplications of mitochondrial DNA in mitochondrial myopathy.  Lancet. 1989;  1 (8632) 236-240
  • 23 Poulton J, Deadman M E, Bindoff L, Morten K, Land J, Brown G. Families of mtDNA re-arrangements can be detected in patients with mtDNA deletions: duplications may be a transient intermediate form.  Hum Mol Genet. 1993;  2 (1) 23-30
  • 24 Zeviani M, Servidei S, Gellera C, Bertini E, DiMauro S, DiDonato S. An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting at the D-loop region.  Nature. 1989;  339 (6222) 309-311
  • 25 Zeviani M, Bresolin N, Gellera C et al.. Nucleus-driven multiple large-scale deletions of the human mitochondrial genome: a new autosomal dominant disease.  Am J Hum Genet. 1990;  47 (6) 904-914
  • 26 Moraes C T, DiMauro S, Zeviani M et al.. Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome.  N Engl J Med. 1989;  320 (20) 1293-1299
  • 27 Tengan C H, Moraes C T. Detection and analysis of mitochondrial DNA deletions by whole genome PCR.  Biochem Mol Med. 1996;  58 (1) 130-134
  • 28 He L, Chinnery P F, Durham S E et al.. Detection and quantification of mitochondrial DNA deletions in individual cells by real-time PCR.  Nucleic Acids Res. 2002;  30 (14) e68
  • 29 Sue C M, Quigley A, Katsabanis S et al.. Detection of MELAS A3243G point mutation in muscle, blood and hair follicles.  J Neurol Sci. 1998;  161 (1) 36-39
  • 30 Pavlakis S G, Phillips P C, DiMauro S, De Vivo D C, Rowland L P. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: a distinctive clinical syndrome.  Ann Neurol. 1984;  16 (4) 481-488
  • 31 Goto Y, Nonaka I, Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies.  Nature. 1990;  348 (6302) 651-653
  • 32 Goto Y. Clinical features of MELAS and mitochondrial DNA mutations.  Muscle Nerve. 1995;  3 (12) S107-S112
  • 33 Sue C M, Crimmins D S, Soo Y S et al.. Neuroradiological features of six kindreds with MELAS tRNA(Leu) A2343G point mutation: implications for pathogenesis.  J Neurol Neurosurg Psychiatry. 1998;  65 (2) 233-240
  • 34 Sue C M, Lipsett L J, Crimmins D S et al.. Cochlear origin of hearing loss in MELAS syndrome.  Ann Neurol. 1998;  43 (3) 350-359
  • 35 Kadowaki T, Kadowaki H, Mori Y et al.. A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA.  N Engl J Med. 1994;  330 (14) 962-968
  • 36 van den Ouweland J M, Lemkes H H, Trembath R C et al.. Maternally inherited diabetes and deafness is a distinct subtype of diabetes and associates with a single point mutation in the mitochondrial tRNA(Leu)(UUR) gene.  Diabetes. 1994;  43 (6) 746-751
  • 37 Moraes C T, Ciacci F, Silvestri G et al.. Atypical clinical presentations associated with the MELAS mutation at position 3243 of human mitochondrial DNA.  Neuromuscul Disord. 1993;  3 (1) 43-50
  • 38 Johns D R, Stein A G, Wityk R. MELAS syndrome masquerading as herpes simplex encephalitis.  Neurology. 1993;  43 (12) 2471-2473
  • 39 Crimmins D, Morris J G, Walker G L et al.. Mitochondrial encephalomyopathy: variable clinical expression within a single kindred.  J Neurol Neurosurg Psychiatry. 1993;  56 (8) 900-905
  • 40 Fukuhara N, Tokiguchi S, Shirakawa K, Tsubaki T. Myoclonus epilepsy associated with ragged-red fibres (mitochondrial abnormalities): disease entity or a syndrome? Light-and electron-microscopic studies of two cases and review of literature.  J Neurol Sci. 1980;  47 (1) 117-133
  • 41 Shoffner J M, Lott M T, Lezza AMS, Seibel P, Ballinger S W, Wallace D C. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation.  Cell. 1990;  61 (6) 931-937
  • 42 Tatuch Y, Christodoulou J, Feigenbaum A et al.. Heteroplasmic mtDNA mutation (T----G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high.  Am J Hum Genet. 1992;  50 (4) 852-858
  • 43 Kirby D M, Boneh A, Chow C W et al.. Low mutant load of mitochondrial DNA G13513A mutation can cause Leigh's disease.  Ann Neurol. 2003;  54 (4) 473-478
  • 44 Sarzi E, Brown M D, Lebon S et al.. A novel recurrent mitochondrial DNA mutation in ND3 gene is associated with isolated complex I deficiency causing Leigh syndrome and dystonia.  Am J Med Genet A. 2007;  143 (1) 33-41
  • 45 Man PYW, Turnbull D M, Chinnery P F. Leber hereditary optic neuropathy.  J Med Genet. 2002;  39 (3) 162-169
  • 46 Jun A S, Trounce I A, Brown M D, Shoffner J M, Wallace D C. Use of transmitochondrial cybrids to assign a complex I defect to the mitochondrial DNA-encoded NADH dehydrogenase subunit 6 gene mutation at nucleotide pair 14459 that causes Leber hereditary optic neuropathy and dystonia.  Mol Cell Biol. 1996;  16 (3) 771-777
  • 47 Manwaring N, Jones M M, Wang J J et al.. Population prevalence of the MELAS A3243G mutation.  Mitochondrion. 2007;  7 (3) 230-233
  • 48 Vandebona H, Mitchell P, Manwaring N et al.. Prevalence of mitochondrial 1555A—> G mutation in adults of European descent.  N Engl J Med. 2009;  360 (6) 642-644
  • 49 Spinazzola A, Zeviani M. Disorders of nuclear-mitochondrial intergenomic signaling.  Gene. 2005;  354 162-168
  • 50 Pagliarini D J, Calvo S E, Chang B et al.. A mitochondrial protein compendium elucidates complex I disease biology.  Cell. 2008;  134 (1) 112-123
  • 51 Koene S, Smeitink J. Mitochondrial medicine: entering the era of treatment.  J Intern Med. 2009;  265 (2) 193-209
  • 52 Wong L-JC. Molecular genetics of mitochondrial disorders.  Dev Disabil Res Rev. 2010;  16 (2) 154-162
  • 53 Quinzii C M, Kattah A G, Naini A et al.. Coenzyme Q deficiency and cerebellar ataxia associated with an aprataxin mutation.  Neurology. 2005;  64 (3) 539-541
  • 54 Mollet J, Giurgea I, Schlemmer D et al.. Prenyldiphosphate synthase, subunit 1 (PDSS1) and OH-benzoate polyprenyltransferase (COQ2) mutations in ubiquinone deficiency and oxidative phosphorylation disorders.  J Clin Invest. 2007;  117 (3) 765-772
  • 55 Lagier-Tourenne C, Tazir M, López L C et al.. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency.  Am J Hum Genet. 2008;  82 (3) 661-672
  • 56 Mollet J, Delahodde A, Serre V et al.. CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures.  Am J Hum Genet. 2008;  82 (3) 623-630
  • 57 Quinzii C, Naini A, Salviati L et al.. A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency.  Am J Hum Genet. 2006;  78 (2) 345-349
  • 58 Gempel K, Topaloglu H, Talim B et al.. The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene.  Brain. 2007;  130 (Pt 8) 2037-2044
  • 59 Nishino I, Spinazzola A, Hirano M. Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder.  Science. 1999;  283 (5402) 689-692
  • 60 Hirano M, Lagier-Tourenne C, Valentino M L, Martí R, Nishigaki Y. Thymidine phosphorylase mutations cause instability of mitochondrial DNA.  Gene. 2005;  354 152-156
  • 61 Hirano M, Martí R, Casali C et al.. Allogeneic stem cell transplantation corrects biochemical derangements in MNGIE.  Neurology. 2006;  67 (8) 1458-1460
  • 62 DiMauro S, Hirano M, Kaufmann P, Mann J J. Mitochondrial psychiatry. In: DiMauro S, Hirano M, Schon E, eds. Mitochondrial Medicine. London: Informa Healthcare; 2006: 261-277
  • 63 Horvath R, Hudson G, Ferrari G et al.. Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene.  Brain. 2006;  129 (Pt 7) 1674-1684
  • 64 Longley M J, Clark S, Yu Wai Man C et al.. Mutant POLG2 disrupts DNA polymerase gamma subunits and causes progressive external ophthalmoplegia.  Am J Hum Genet. 2006;  78 (6) 1026-1034
  • 65 Barth P G, Wanders R J, Vreken P, Janssen E A, Lam J, Baas F. X-linked cardioskeletal myopathy and neutropenia (Barth syndrome) (MIM 302060).  J Inherit Metab Dis. 1999;  22 (4) 555-567
  • 66 Bossy-Wetzel E, Barsoum M J, Godzik A, Schwarzenbacher R, Lipton S A. Mitochondrial fission in apoptosis, neurodegeneration and aging.  Curr Opin Cell Biol. 2003;  15 (6) 706-716
  • 67 Fichera M, Lo Giudice M, Falco M et al.. Evidence of kinesin heavy chain (KIF5A) involvement in pure hereditary spastic paraplegia.  Neurology. 2004;  63 (6) 1108-1110
  • 68 Delettre C, Lenaers G, Griffoin J-M et al.. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy.  Nat Genet. 2000;  26 (2) 207-210
  • 69 Züchner S, Mersiyanova I V, Muglia M et al.. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A.  Nat Genet. 2004;  36 (5) 449-451
  • 70 Lawson V H, Graham B V, Flanigan K M. Clinical and electrophysiologic features of CMT2A with mutations in the mitofusin 2 gene.  Neurology. 2005;  65 (2) 197-204
  • 71 Züchner S, De Jonghe P, Jordanova A et al.. Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2.  Ann Neurol. 2006;  59 (2) 276-281

Carolyn Sue
M.B.B.S.Ph.D. 

Professor, Department of Neurogenetics, Kolling Institute of Medical Research, Royal North Shore Hospital

Building 6, Reserve Road, St. Leonards, New South Wales 2065, Australia

Email: carolyn.sue@sydney.edu.au

    >