RSS-Feed abonnieren
DOI: 10.1055/s-0031-1299789
Genetics of Epilepsy
Publikationsverlauf
Publikationsdatum:
21. Januar 2012 (online)

ABSTRACT
Epilepsy is a common and very heterogeneous neurologic disorder. Genetic factors are likely to play a role in most cases, either because the underlying cause of epilepsy is primarily genetic or because genes modulate susceptibility to an epileptogenic insult. Primarily genetic epilepsies include conditions in which altered brain development or neurodegeneration are at the basis of seizures, but also conditions in which the brain is grossly normal, and the main, if not only, clinical feature is epilepsy. These are called idiopathic epilepsies, though this definition may change in the future. A few idiopathic epilepsies are monogenic disorders due to mutations in a variety of genes affecting neuronal excitability, synaptic transmission, or network development. Most cases have a complex etiology that combines predisposing genetic variants with nongenetic factors. Few of these have been identified so far and only in very few affected individuals, consisting mostly of deletions of critical chromosomal regions. Genetic factors also play a role in the response to antiepileptic drugs, affecting both their efficacy and their tolerability. There have been recent advances in discovering such factors, in particular those underlying risk to medication toxicity.
KEYWORDS
Epilepsy - Mendelian genetics - complex genetics - gene mapping - mutation analysis - genetic association studies - copy number variation - single nucleotide polymorphism - ion channel - neurotransmitter - brain development - brain metabolism - pharmacogenetics - drug response - drug toxicity
REFERENCES
- 1
Banerjee P N, Filippi D, Allen Hauser W.
The descriptive epidemiology of epilepsy-a review.
Epilepsy Res.
2009;
85
(1)
31-45
Reference Ris Wihthout Link
- 2
Mullen S A, Scheffer I E.
Translational research in epilepsy genetics: sodium channels in man to interneuronopathy
in mouse.
Arch Neurol.
2009;
66
(1)
21-26
Reference Ris Wihthout Link
- 3
Berkovic S F, Howell R A, Hay D A, Hopper J L.
Epilepsies in twins: genetics of the major epilepsy syndromes.
Ann Neurol.
1998;
43
(4)
435-445
Reference Ris Wihthout Link
- 4
Poduri A, Lowenstein D.
Epilepsy genetics—past, present, and future.
Curr Opin Genet Dev.
2011;
21
(3)
325-332
Reference Ris Wihthout Link
- 5
Commission on Classification and Terminology of the International League Against Epilepsy .
Proposal for revised classification of epilepsies and epileptic syndromes.
Epilepsia.
1989;
30
(4)
389-399
Reference Ris Wihthout Link
- 6
Berg A T, Berkovic S F, Brodie M J et al..
Revised terminology and concepts for organization of seizures and epilepsies: report
of the ILAE Commission on Classification and Terminology, 2005-2009.
Epilepsia.
2010;
51
(4)
676-685
Reference Ris Wihthout Link
- 7
Nakayama J.
Progress in searching for the febrile seizure susceptibility genes.
Brain Dev.
2009;
31
(5)
359-365
Reference Ris Wihthout Link
- 8
Wallace R H, Berkovic S F, Howell R A, Sutherland G R, Mulley J C.
Suggestion of a major gene for familial febrile convulsions mapping to 8q13-21.
J Med Genet.
1996;
33
(4)
308-312
Reference Ris Wihthout Link
- 9
Johnson E W, Dubovsky J, Rich S S et al..
Evidence for a novel gene for familial febrile convulsions, FEB2, linked to chromosome
19p in an extended family from the Midwest.
Hum Mol Genet.
1998;
7
(1)
63-67
Reference Ris Wihthout Link
- 10
Peiffer A, Thompson J, Charlier C et al..
A locus for febrile seizures (FEB3) maps to chromosome 2q23-24.
Ann Neurol.
1999;
46
(4)
671-678
Reference Ris Wihthout Link
- 11
Nakayama J, Hamano K, Iwasaki N et al..
Significant evidence for linkage of febrile seizures to chromosome 5q14-q15.
Hum Mol Genet.
2000;
9
(1)
87-91
Reference Ris Wihthout Link
- 12
Nabbout R, Prud'homme J-F, Herman A et al..
A locus for simple pure febrile seizures maps to chromosome 6q22-q24.
Brain.
2002;
125
(Pt 12)
2668-2680
Reference Ris Wihthout Link
- 13
Nakayama J, Yamamoto N, Hamano K et al..
Linkage and association of febrile seizures to the IMPA2 gene on human chromosome
18.
Neurology.
2004;
63
(10)
1803-1807
Reference Ris Wihthout Link
- 14
Siren A, Nuutila A, Anttonen A et al..
Febrile seizures and idiopathic epilepsy: a clinical and genetic study in a Finnish
family.
Epilepsia.
2006;
47
12
Reference Ris Wihthout Link
- 15
Scheffer I E, Berkovic S F.
Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous
clinical phenotypes.
Brain.
1997;
120
(Pt 3)
479-490
Reference Ris Wihthout Link
- 16
Bonanni P, Malcarne M, Moro F et al..
Generalized epilepsy with febrile seizures plus (GEFS+): clinical spectrum in seven
Italian families unrelated to SCN1A, SCN1B, and GABRG2 gene mutations.
Epilepsia.
2004;
45
(2)
149-158
Reference Ris Wihthout Link
- 17
Ito M, Yamakawa K, Sugawara T, Hirose S, Fukuma G, Kaneko S.
Phenotypes and genotypes in epilepsy with febrile seizures plus.
Epilepsy Res.
2006;
70
(Suppl 1)
S199-S205
Reference Ris Wihthout Link
- 18 Scheffer I, Berkovic S. Generalized (genetic) epilepsy with febrile seizures plus. In: Engel J, Pedley T eds.. Epilepsy: A Comprehensive Textbook. Philadelphia: Lippincott, Williams & Wilkins; 2008: 2553-2558
Reference Ris Wihthout Link
- 19
Wallace R H, Wang D W, Singh R et al..
Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel
beta1 subunit gene SCN1B.
Nat Genet.
1998;
19
(4)
366-370
Reference Ris Wihthout Link
- 20
Gambardella A, Marini C.
Clinical spectrum of SCN1A mutations.
Epilepsia.
2009;
50
(Suppl 5)
20-23
Reference Ris Wihthout Link
- 21
Macdonald R L, Kang J Q, Gallagher M J.
Mutations in GABAA receptor subunits associated with genetic epilepsies.
J Physiol.
2010;
588
(Pt 11)
1861-1869
Reference Ris Wihthout Link
- 22
Marini C, Mei D, Parmeggiani L et al..
Protocadherin 19 mutations in girls with infantile-onset epilepsy.
Neurology.
2010;
75
(7)
646-653
Reference Ris Wihthout Link
- 23
Depienne C, Trouillard O, Bouteiller D et al..
Mutations and deletions in PCDH19 account for various familial or isolated epilepsies
in females.
Hum Mutat.
2011;
32
(1)
E1959-E1975
Reference Ris Wihthout Link
- 24
Dravet C.
Les épilepsies graves de l'enfant.
Vie Med.
1978;
8
543-548
Reference Ris Wihthout Link
- 25
Dravet C.
The core Dravet syndrome phenotype.
Epilepsia.
2011;
52
(Suppl 2)
3-9
Reference Ris Wihthout Link
- 26
Zupanc M L.
Clinical evaluation and diagnosis of severe epilepsy syndromes of early childhood.
J Child Neurol.
2009;
24
(8, Suppl)
6S-14S
Reference Ris Wihthout Link
- 27
Ohtahara S et al..
On the specific age dependent epileptic syndrome: the early- infantile epileptic encephalopathy
with suppression-burst. [in Japanese with English abstract].
No To Hattatsu.
1976;
8
270-279
Reference Ris Wihthout Link
- 28
Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P.
De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy
of infancy.
Am J Hum Genet.
2001;
68
(6)
1327-1332
Reference Ris Wihthout Link
- 29
Marini C, Scheffer I E, Nabbout R et al..
The genetics of Dravet syndrome.
Epilepsia.
2011;
52
(Suppl 2)
24-29
Reference Ris Wihthout Link
- 30
Scheffer I E, Zhang Y-H, Jansen F E, Dibbens L.
Dravet syndrome or genetic (generalized) epilepsy with febrile seizures plus?.
Brain Dev.
2009;
31
(5)
394-400
Reference Ris Wihthout Link
- 31
Marini C, Scheffer I E, Nabbout R et al..
SCN1A duplications and deletions detected in Dravet syndrome: implications for molecular
diagnosis.
Epilepsia.
2009;
50
(7)
1670-1678
Reference Ris Wihthout Link
- 32
Kamiya K, Kaneda M, Sugawara T et al..
A nonsense mutation of the sodium channel gene SCN2A in a patient with intractable
epilepsy and mental decline.
J Neurosci.
2004;
24
(11)
2690-2698
Reference Ris Wihthout Link
- 33
Yu F H, Mantegazza M, Westenbroek R E et al..
Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic
epilepsy in infancy.
Nat Neurosci.
2006;
9
(9)
1142-1149
Reference Ris Wihthout Link
- 34
Martin M S, Dutt K, Papale L A et al..
Altered function of the SCN1A voltage-gated sodium channel leads to gamma-aminobutyric
acid-ergic (GABAergic) interneuron abnormalities.
J Biol Chem.
2010;
285
(13)
9823-9834
Reference Ris Wihthout Link
- 35
Madia F, Gennaro E, Cecconi M et al..
No evidence of GABRG2 mutations in severe myoclonic epilepsy of infancy.
Epilepsy Res.
2003;
53
(3)
196-200
Reference Ris Wihthout Link
- 36
Kelley S A, Kossoff E H.
Doose syndrome (myoclonic-astatic epilepsy): 40 years of progress.
Dev Med Child Neurol.
2010;
52
(11)
988-993
Reference Ris Wihthout Link
- 37
Kossoff E H.
Infantile spasms.
Neurologist.
2010;
16
(2)
69-75
Reference Ris Wihthout Link
- 38
Shoubridge C, Fullston T, Gécz J.
ARX spectrum disorders: making inroads into the molecular pathology.
Hum Mutat.
2010;
31
(8)
889-900
Reference Ris Wihthout Link
- 39
Kato M, Saitoh S, Kamei A et al..
A longer polyalanine expansion mutation in the ARX gene causes early infantile epileptic
encephalopathy with suppression-burst pattern (Ohtahara syndrome).
Am J Hum Genet.
2007;
81
(2)
361-366
Reference Ris Wihthout Link
- 40
Castrén M, Gaily E, Tengström C et al..
Epilepsy caused by CDKL5 mutations.
Eur J Paediatr Neurol.
2011;
15
(1)
65-69
Reference Ris Wihthout Link
- 41
Saitsu H, Kato M, Mizuguchi T et al..
De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic
encephalopathy.
Nat Genet.
2008;
40
(6)
782-788
Reference Ris Wihthout Link
- 42
Mignot C, Moutard M L, Trouillard O et al..
STXBP1-related encephalopathy presenting as infantile spasms and generalized tremor
in three patients.
Epilepsia.
2011;
52
(10)
1820-1827
Reference Ris Wihthout Link
- 43
Saitsu H, Kato M, Okada I et al..
STXBP1 mutations in early infantile epileptic encephalopathy with suppression-burst
pattern.
Epilepsia.
2010;
51
(12)
2397-2405
Reference Ris Wihthout Link
- 44
Kurian M A, Meyer E, Vassallo G et al..
Phospholipase C beta 1 deficiency is associated with early-onset epileptic encephalopathy.
Brain.
2010;
133
(10)
2964-2970
Reference Ris Wihthout Link
- 45
Kim D, Jun K S, Lee S B et al..
Phospholipase C isozymes selectively couple to specific neurotransmitter receptors.
Nature.
1997;
389
(6648)
290-293
Reference Ris Wihthout Link
- 46
Hannan A J, Blakemore C, Katsnelson A et al..
PLC-beta1, activated via mGluRs, mediates activity-dependent differentiation in cerebral
cortex.
Nat Neurosci.
2001;
4
(3)
282-288
Reference Ris Wihthout Link
- 47
Böhm D, Schwegler H, Kotthaus L et al..
Disruption of PLC-beta 1-mediated signal transduction in mutant mice causes age-dependent
hippocampal mossy fiber sprouting and neurodegeneration.
Mol Cell Neurosci.
2002;
21
(4)
584-601
Reference Ris Wihthout Link
- 48
Mulley J C, Heron S E, Dibbens L M.
Proposed genetic classification of the “benign” familial neonatal and infantile epilepsies.
Epilepsia.
2011;
52
(3)
649-650
Reference Ris Wihthout Link
- 49
Yamamoto H, Okumura A, Fukuda M.
Epilepsies and epileptic syndromes starting in the neonatal period.
Brain Dev.
2011;
33
(3)
213-220
Reference Ris Wihthout Link
- 50
Singh N A, Westenskow P, Charlier C BFNC Physician Consortium et al.
KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion
of the functional and mutation spectrum.
Brain.
2003;
126
(Pt 12)
2726-2737
Reference Ris Wihthout Link
- 51
Volkers L, Rook M B, Das JHG et al..
Functional analysis of novel KCNQ2 mutations found in patients with benign familial
neonatal convulsions.
Neurosci Lett.
2009;
462
(1)
24-29
Reference Ris Wihthout Link
- 52
Soldovieri M V, Cilio M R, Miceli F et al..
Atypical gating of M-type potassium channels conferred by mutations in uncharged residues
in the S4 region of KCNQ2 causing benign familial neonatal convulsions.
J Neurosci.
2007;
27
(18)
4919-4928
Reference Ris Wihthout Link
- 53
Tzingounis A V, Nicoll R A.
Contribution of KCNQ2 and KCNQ3 to the medium and slow afterhyperpolarization currents.
Proc Natl Acad Sci U S A.
2008;
105
(50)
19974-19979
Reference Ris Wihthout Link
- 54
Kanaumi T, Takashima S, Iwasaki H et al..
Developmental changes in KCNQ2 and KCNQ3 expression in human brain: possible contribution
to the age-dependent etiology of benign familial neonatal convulsions.
Brain Dev.
2008;
30
(5)
362-369
Reference Ris Wihthout Link
- 55
Heron S E, Crossland K M, Andermann E et al..
Sodium-channel defects in benign familial neonatal-infantile seizures.
Lancet.
2002;
360
(9336)
851-852
Reference Ris Wihthout Link
- 56
Liao Y, Anttonen A-K, Liukkonen E et al..
SCN2A mutation associated with neonatal epilepsy, late-onset episodic ataxia, myoclonus,
and pain.
Neurology.
2010;
75
(16)
1454-1458
Reference Ris Wihthout Link
- 57
Guipponi M, Rivier F, Vigevano F et al..
Linkage mapping of benign familial infantile convulsions (BFIC) to chromosome 19q.
Hum Mol Genet.
1997;
6
(3)
473-477
Reference Ris Wihthout Link
- 58
Swoboda K J, Soong B, McKenna C et al..
Paroxysmal kinesigenic dyskinesia and infantile convulsions: clinical and linkage
studies.
Neurology.
2000;
55
(2)
224-230
Reference Ris Wihthout Link
- 59
Vanmolkot KRJ, Kors E E, Hottenga J-J et al..
Novel mutations in the Na+, K+-ATPase pump gene ATP1A2 associated with familial hemiplegic
migraine and benign familial infantile convulsions.
Ann Neurol.
2003;
54
(3)
360-366
Reference Ris Wihthout Link
- 60
Falace A, Filipello F, La Padula V et al..
TBC1D24, an ARF6-interacting protein, is mutated in familial infantile myoclonic epilepsy.
Am J Hum Genet.
2010;
87
(3)
365-370
Reference Ris Wihthout Link
- 61
Pan X, Eathiraj S, Munson M, Lambright D G.
TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism.
Nature.
2006;
442
(7100)
303-306
Reference Ris Wihthout Link
- 62
Frittoli E, Palamidessi A, Pizzigoni A et al..
The primate-specific protein TBC1D3 is required for optimal macropinocytosis in a
novel ARF6-dependent pathway.
Mol Biol Cell.
2008;
19
(4)
1304-1316
Reference Ris Wihthout Link
- 63
Jaworski J.
ARF6 in the nervous system.
Eur J Cell Biol.
2007;
86
(9)
513-524
Reference Ris Wihthout Link
- 64
Corbett M A, Bahlo M, Jolly L et al..
A focal epilepsy and intellectual disability syndrome is due to a mutation in TBC1D24.
Am J Hum Genet.
2010;
87
(3)
371-375
Reference Ris Wihthout Link
- 65
Suzuki T, Delgado-Escueta A V, Aguan K et al..
Mutations in EFHC1 cause juvenile myoclonic epilepsy.
Nat Genet.
2004;
36
(8)
842-849
Reference Ris Wihthout Link
- 66
Ma S, Blair M A, Abou-Khalil B et al..
Mutations in the GABRA1 and EFHC1 genes are rare in familial juvenile myoclonic epilepsy.
Epilepsy Res.
2006;
71
(2-3)
129-134
Reference Ris Wihthout Link
- 67
Léon C, de Nijs L, Chanas G et al..
Distribution of EFHC1 or myoclonin 1 in mouse neural structures.
Epilepsy Res.
2010;
88
(2-3)
196-207
Reference Ris Wihthout Link
- 68
Suzuki T, Inoue I, Yamagata T et al..
Sequential expression of Efhc1/myoclonin1 in choroid plexus and ependymal cell cilia.
Biochem Biophys Res Commun.
2008;
367
(1)
226-233
Reference Ris Wihthout Link
- 69
Kamp M A, Krieger A, Henry M et al..
Presynaptic ‘Ca2.3-containing’ E-type Ca channels share dual roles during neurotransmitter
release.
Eur J Neurosci.
2005;
21
(6)
1617-1625
Reference Ris Wihthout Link
- 70
de Nijs L, Léon C, Nguyen L et al..
EFHC1 interacts with microtubules to regulate cell division and cortical development.
Nat Neurosci.
2009;
12
(10)
1266-1274
Reference Ris Wihthout Link
- 71
Betting L E, Mory S B, Lopes-Cendes I et al..
MRI reveals structural abnormalities in patients with idiopathic generalized epilepsy.
Neurology.
2006;
67
(5)
848-852
Reference Ris Wihthout Link
- 72
Betting L E, Mory S B, Li L M et al..
Voxel-based morphometry in patients with idiopathic generalized epilepsies.
Neuroimage.
2006;
32
(2)
498-502
Reference Ris Wihthout Link
- 73
Tae W S, Kim S H, Joo E Y et al..
Cortical thickness abnormality in juvenile myoclonic epilepsy.
J Neurol.
2008;
255
(4)
561-566
Reference Ris Wihthout Link
- 74
Cossette P, Liu L, Brisebois K et al..
Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy.
Nat Genet.
2002;
31
(2)
184-189
Reference Ris Wihthout Link
- 75
Escayg A, De Waard M, Lee D D et al..
Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4
in patients with idiopathic generalized epilepsy and episodic ataxia.
Am J Hum Genet.
2000;
66
(5)
1531-1539
Reference Ris Wihthout Link
- 76
Haug K, Warnstedt M, Alekov A K et al..
Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic
generalized epilepsies.
Nat Genet.
2003;
33
(4)
527-532
Reference Ris Wihthout Link
- 77
Kleefuss-Lie A, Friedl W, Cichon S et al..
CLCN2 variants in idiopathic generalized epilepsy.
Nat Genet.
2009;
41
(9)
954-955
Reference Ris Wihthout Link
- 78
Niemeyer M I, Cid L P, Sepúlveda F V, Blanz J, Auberson M, Jentsch T J.
No evidence for a role of CLCN2 variants in idiopathic generalized epilepsy.
Nat Genet.
2010;
42
(1)
3
Reference Ris Wihthout Link
- 79
Sander T, Schulz H, Saar K et al..
Genome search for susceptibility loci of common idiopathic generalised epilepsies.
Hum Mol Genet.
2000;
9
(10)
1465-1472
Reference Ris Wihthout Link
- 80
D'Agostino D, Bertelli M, Gallo S et al..
Mutations and polymorphisms of the CLCN2 gene in idiopathic epilepsy.
Neurology.
2004;
63
(8)
1500-1502
Reference Ris Wihthout Link
- 81
Wallace R H, Marini C, Petrou S et al..
Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures.
Nat Genet.
2001;
28
(1)
49-52
Reference Ris Wihthout Link
- 82
Mullen S A, Suls A, De Jonghe P, Berkovic S F, Scheffer I E.
Absence epilepsies with widely variable onset are a key feature of familial GLUT1
deficiency.
Neurology.
2010;
75
(5)
432-440
Reference Ris Wihthout Link
- 83
Suls A, Mullen S A, Weber Y G et al..
Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1.
Ann Neurol.
2009;
66
(3)
415-419
Reference Ris Wihthout Link
- 84
Seidner G, Alvarez M G, Yeh J I et al..
GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier
hexose carrier.
Nat Genet.
1998;
18
(2)
188-191
Reference Ris Wihthout Link
- 85
Suls A, Dedeken P, Goffin K et al..
Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1,
encoding the glucose transporter GLUT1.
Brain.
2008;
131
(Pt 7)
1831-1844
Reference Ris Wihthout Link
- 86
Brockmann K.
The expanding phenotype of GLUT1-deficiency syndrome.
Brain Dev.
2009;
31
(7)
545-552
Reference Ris Wihthout Link
- 87
Steinlein O K, Mulley J C, Propping P et al..
A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit
is associated with autosomal dominant nocturnal frontal lobe epilepsy.
Nat Genet.
1995;
11
(2)
201-203
Reference Ris Wihthout Link
- 88
Aridon P, Marini C, Di Resta C et al..
Increased sensitivity of the neuronal nicotinic receptor alpha 2 subunit causes familial
epilepsy with nocturnal wandering and ictal fear.
Am J Hum Genet.
2006;
79
(2)
342-350
Reference Ris Wihthout Link
- 89
De Fusco M, Becchetti A, Patrignani A et al..
The nicotinic receptor beta 2 subunit is mutant in nocturnal frontal lobe epilepsy.
Nat Genet.
2000;
26
(3)
275-276
Reference Ris Wihthout Link
- 90
Combi R, Dalprà L, Malcovati M et al..
Evidence for a fourth locus for autosomal dominant nocturnal frontal lobe epilepsy.
Brain Res Bull.
2004;
63
(5)
353-359
Reference Ris Wihthout Link
- 91
Klaassen A, Glykys J, Maguire J et al..
Seizures and enhanced cortical GABAergic inhibition in two mouse models of human autosomal
dominant nocturnal frontal lobe epilepsy.
Proc Natl Acad Sci U S A.
2006;
103
(50)
19152-19157
Reference Ris Wihthout Link
- 92
Crompton D E, Scheffer I E, Taylor I et al..
Familial mesial temporal lobe epilepsy: a benign epilepsy syndrome showing complex
inheritance.
Brain.
2010;
133
(11)
3221-3231
Reference Ris Wihthout Link
- 93
Kalachikov S, Evgrafov O, Ross B et al..
Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features.
Nat Genet.
2002;
30
(3)
335-341
Reference Ris Wihthout Link
- 94
Scheel H, Tomiuk S, Hofmann K.
A common protein interaction domain links two recently identified epilepsy genes.
Hum Mol Genet.
2002;
11
(15)
1757-1762
Reference Ris Wihthout Link
- 95
Sirerol-Piquer M S, Ayerdi-Izquierdo A, Morante-Redolat J M et al..
The epilepsy gene LGI1 encodes a secreted glycoprotein that binds to the cell surface.
Hum Mol Genet.
2006;
15
(23)
3436-3445
Reference Ris Wihthout Link
- 96
Ribeiro PAO, Sbragia L, Gilioli R et al..
Expression profile of Lgi1 gene in mouse brain during development.
J Mol Neurosci.
2008;
35
(3)
323-329
Reference Ris Wihthout Link
- 97
Owuor K, Harel N Y, Englot D J et al..
LGI1-associated epilepsy through altered ADAM23-dependent neuronal morphology.
Mol Cell Neurosci.
2009;
42
(4)
448-457
Reference Ris Wihthout Link
- 98
Fukata Y, Lovero K L, Iwanaga T et al..
Disruption of LGI1-linked synaptic complex causes abnormal synaptic transmission and
epilepsy.
Proc Natl Acad Sci U S A.
2010;
107
(8)
3799-3804
Reference Ris Wihthout Link
- 99
Yu Y E, Wen L, Silva J et al..
Lgi1 null mutant mice exhibit myoclonic seizures and CA1 neuronal hyperexcitability.
Hum Mol Genet.
2010;
19
(9)
1702-1711
Reference Ris Wihthout Link
- 100
Lai M, Huijbers MGM, Lancaster E et al..
Investigation of LGI1 as the antigen in limbic encephalitis previously attributed
to potassium channels: a case series.
Lancet Neurol.
2010;
9
(8)
776-785
Reference Ris Wihthout Link
- 101
Irani S R, Alexander S, Waters P et al..
Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated
1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan's syndrome
and acquired neuromyotonia.
Brain.
2010;
133
(9)
2734-2748
Reference Ris Wihthout Link
- 102
Berkovic S F, McIntosh A, Howell R A et al..
Familial temporal lobe epilepsy: a common disorder identified in twins.
Ann Neurol.
1996;
40
(2)
227-235
Reference Ris Wihthout Link
- 103
Hedera P, Blair M A, Andermann E et al..
Familial mesial temporal lobe epilepsy maps to chromosome 4q13.2-q21.3
Neurology.
2007;
68
(24)
2107-2112
Reference Ris Wihthout Link
- 104
Baulac S, Picard F, Herman A et al..
Evidence for digenic inheritance in a family with both febrile convulsions and temporal
lobe epilepsy implicating chromosomes 18qter and 1q25-q31.
Ann Neurol.
2001;
49
(6)
786-792
Reference Ris Wihthout Link
- 105
Claes L, Audenaert D, Deprez L et al..
Novel locus on chromosome 12q22-q23.3 responsible for familial temporal lobe epilepsy
associated with febrile seizures.
J Med Genet.
2004;
41
(9)
710-714
Reference Ris Wihthout Link
- 106
Xiong L, Labuda M, Li D S et al..
Mapping of a gene determining familial partial epilepsy with variable foci to chromosome
22q11-q12.
Am J Hum Genet.
1999;
65
(6)
1698-1710
Reference Ris Wihthout Link
- 107
Berkovic S F, Serratosa J M, Phillips H A et al..
Familial partial epilepsy with variable foci: clinical features and linkage to chromosome
22q12.
Epilepsia.
2004;
45
(9)
1054-1060
Reference Ris Wihthout Link
- 108
Manzini M C, Walsh C.
What disorders of cortical development tell us about the cortex: one plus one does
not always make two.
Curr Opin Genet Dev.
2011;
21
(3)
333-339
Reference Ris Wihthout Link
- 109
Pal D K, Pong A W, Chung W K.
Genetic evaluation and counseling for epilepsy.
Nat Rev Neurol.
2010;
16
(8)
445-453
Reference Ris Wihthout Link
- 110
Altshuler D, Daly M J, Lander E S.
Genetic mapping in human disease.
Science.
2008;
322
(5903)
881-888
Reference Ris Wihthout Link
- 111
Shields R.
Common disease: are causative alleles common or rare?.
PLoS Biol.
2011;
9
(1)
e1001009
Reference Ris Wihthout Link
- 112
Chen Y, Lu J, Pan H et al..
Association between genetic variation of CACNA1H and childhood absence epilepsy.
Ann Neurol.
2003;
54
(2)
239-243
Reference Ris Wihthout Link
- 113
Chioza B, Everett K, Aschauer H et al..
Evaluation of CACNA1H in European patients with childhood absence epilepsy.
Epilepsy Res.
2006;
69
(2)
177-181
Reference Ris Wihthout Link
- 114
Liang J, Zhang Y, Chen Y et al..
Common polymorphisms in the CACNA1H gene associated with childhood absence epilepsy
in Chinese Han population.
Ann Hum Genet.
2007;
71
(Pt 3)
325-335
Reference Ris Wihthout Link
- 115
Pal D K, Evgrafov O V, Tabares P et al..
BRD2 (RING3) is a probable major susceptibility gene for common juvenile myoclonic
epilepsy.
Am J Hum Genet.
2003;
73
(2)
261-270
Reference Ris Wihthout Link
- 116
Greenberg D A, Cayanis E, Strug L et al..
Malic enzyme 2 may underlie susceptibility to adolescent-onset idiopathic generalized
epilepsy.
Am J Hum Genet.
2005;
76
(1)
139-146
Reference Ris Wihthout Link
- 117
Cavalleri G L, Weale M E, Shianna K V et al..
Multicentre search for genetic susceptibility loci in sporadic epilepsy syndrome and
seizure types: a case-control study.
Lancet Neurol.
2007;
6
(11)
970-980
Reference Ris Wihthout Link
- 118
Lenzen K P, Heils A, Lorenz S, Hempelmann A, Sander T.
Association analysis of malic enzyme 2 gene polymorphisms with idiopathic generalized
epilepsy.
Epilepsia.
2005;
46
(10)
1637-1641
Reference Ris Wihthout Link
- 119
Cavalleri G L, Weale M E, Shianna K V et al..
Multicentre search for genetic susceptibility loci in sporadic epilepsy syndrome and
seizure types: a case-control study.
Lancet Neurol.
2007;
6
(11)
970-980
Reference Ris Wihthout Link
- 120
Mulley J C, Mefford H C.
Epilepsy and the new cytogenetics.
Epilepsia.
2011;
52
(3)
423-432
Reference Ris Wihthout Link
- 121
Helbig I, Mefford H C, Sharp A J et al..
15q13.3 microdeletions increase risk of idiopathic generalized epilepsy.
Nat Genet.
2009;
41
(2)
160-162
Reference Ris Wihthout Link
- 122
Mefford H C, Muhle H, Ostertag P et al..
Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic
generalized and focal epilepsies.
PLoS Genet.
2010;
6
(5)
e1000962
Reference Ris Wihthout Link
- 123
Heinzen E L, Radtke R A, Urban T J et al..
Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes.
Am J Hum Genet.
2010;
86
(5)
707-718
Reference Ris Wihthout Link
- 124
Kasperaviciūte D, Catarino C B, Heinzen E L et al..
Common genetic variation and susceptibility to partial epilepsies: a genome-wide association
study.
Brain.
2010;
133
(Pt 7)
2136-2147
Reference Ris Wihthout Link
- 125
Depondt C.
Pharmacogenetics in neuropsychiatric diseases: epilepsy as a model.
Acta Neurol Belg.
2006;
106
(4)
157-167
Reference Ris Wihthout Link
- 126
Löscher W, Klotz U, Zimprich F, Schmidt D.
The clinical impact of pharmacogenetics on the treatment of epilepsy.
Epilepsia.
2009;
50
(1)
1-23
Reference Ris Wihthout Link
- 127
Siddiqui A, Kerb R, Weale M E et al..
Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter
gene ABCB1.
N Engl J Med.
2003;
348
(15)
1442-1448
Reference Ris Wihthout Link
- 128
Löscher W, Delanty N.
MDR1/ABCB1 polymorphisms and multidrug resistance in epilepsy: in and out of fashion.
Pharmacogenomics.
2009;
10
(5)
711-713
Reference Ris Wihthout Link
- 129
Anderson G D.
Pharmacokinetic, pharmacodynamic, and pharmacogenetic targeted therapy of antiepileptic
drugs.
Ther Drug Monit.
2008;
30
(2)
173-180
Reference Ris Wihthout Link
- 130
Depondt C, Godard P, Espel R S, Da Cruz A L, Lienard P, Pandolfo M.
A candidate gene study of antiepileptic drug tolerability and efficacy identifies
an association of CYP2C9 variants with phenytoin toxicity.
Eur J Neurol.
2011;
18
(9)
1159-1164
Reference Ris Wihthout Link
- 131
Tate S K, Singh R, Hung C-C et al..
A common polymorphism in the SCN1A gene associates with phenytoin serum levels at
maintenance dose.
Pharmacogenet Genomics.
2006;
16
(10)
721-726
Reference Ris Wihthout Link
- 132
Abe T, Seo T, Ishitsu T, Nakagawa T, Hori M, Nakagawa K.
Association between SCN1A polymorphism and carbamazepine-resistant epilepsy.
Br J Clin Pharmacol.
2008;
66
(2)
304-307
Reference Ris Wihthout Link
- 133
Manna I, Gambardella A, Bianchi A et al..
A functional polymorphism in the SCN1A gene does not influence antiepileptic drug
responsiveness in Italian patients with focal epilepsy.
Epilepsia.
2011;
52
(5)
e40-e44
Reference Ris Wihthout Link
- 134
Pirmohamed M, Lin K, Chadwick D, Park B K.
TNFalpha promoter region gene polymorphisms in carbamazepine-hypersensitive patients.
Neurology.
2001;
56
(7)
890-896
Reference Ris Wihthout Link
- 135
Chung W-H, Hung S-I, Hong H-S et al..
Medical genetics: a marker for Stevens-Johnson syndrome.
Nature.
2004;
428
(6982)
486
Reference Ris Wihthout Link
- 136
Chen P, Lin J-J, Lu C-S Taiwan SJS Consortium et al.
Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan.
N Engl J Med.
2011;
364
(12)
1126-1133
Reference Ris Wihthout Link
- 137
Ozeki T, Mushiroda T, Yowang A et al..
Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor
for carbamazepine-induced cutaneous adverse drug reactions in Japanese population.
Hum Mol Genet.
2011;
20
(5)
1034-1041
Reference Ris Wihthout Link
- 138
McCormack M, Alfirevic A, Bourgeois S et al..
HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans.
N Engl J Med.
2011;
364
(12)
1134-1143
Reference Ris Wihthout Link
- 139
Lee H Y, Huang Y, Bruneau N et al..
Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile
convulsions.
Cell Reports.
2012;
1
1-11
Reference Ris Wihthout Link
Truncating mutations involving the gene PRRT2 have been identified in the vast majority of well-characterized families with Paroxysmal Kinesigenic Dyskinesia with Infantile Convulsions. PRRT2 encodes a proline-rich transmembrane protein of unknown function that has been reported to interact with the synaptic proteins.[139]
Massimo PandolfoM.D.
Department of Neurology, Université Libre de Bruxelles, Hôpital Erasme
Route de Lennik 808, 1070 Brussels, Belgium
eMail: Massimo.pandolfo@ulb.ac.be