Semin Neurol 2011; 31(5): 470-483
DOI: 10.1055/s-0031-1299786
© Thieme Medical Publishers

Epigenetics in Nucleotide Repeat Expansion Disorders

Fang He1 , Peter K. Todd1
  • 1Department of Neurology, University of Michigan, Ann Arbor, Michigan
Further Information

Publication History

Publication Date:
21 January 2012 (online)

ABSTRACT

Over the past 20 years, nucleotide repeat expansion disorders have informed our broader understanding of neurodevelopmental and neurodegenerative disease. This is especially true with regard to the contributions of epigenetic mechanisms to neurologic disease pathogenesis. In this review, the authors describe a few of the myriad ways in which epigenetic processes underlie aspects of repeat expansion disorder pathophysiology and discuss how therapies targeted at epigenetic modulation hold promise for many of these disorders.

REFERENCES

  • 1 Kumari D, Usdin K. Chromatin remodeling in the noncoding repeat expansion diseases.  J Biol Chem. 2009;  284 (12) 7413-7417
  • 2 Campuzano V, Montermini L, Moltò M D et al.. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion.  Science. 1996;  271 (5254) 1423-1427
  • 3 Orr H T, Zoghbi H Y. Trinucleotide repeat disorders.  Annu Rev Neurosci. 2007;  30 575-621
  • 4 Williams A J, Paulson H L. Polyglutamine neurodegeneration: protein misfolding revisited.  Trends Neurosci. 2008;  31 (10) 521-528
  • 5 Todd P K, Paulson H L. RNA-mediated neurodegeneration in repeat expansion disorders.  Ann Neurol. 2010;  67 (3) 291-300
  • 6 Wheeler T M, Thornton C A. Myotonic dystrophy: RNA-mediated muscle disease.  Curr Opin Neurol. 2007;  20 (5) 572-576
  • 7 Cho D H, Tapscott S J. Myotonic dystrophy: emerging mechanisms for DM1 and DM2.  Biochim Biophys Acta. 2007;  1772 (2) 195-204
  • 8 Riley B E, Orr H T. Polyglutamine neurodegenerative diseases and regulation of transcription: assembling the puzzle.  Genes Dev. 2006;  20 (16) 2183-2192
  • 9 Portela A, Esteller M. Epigenetic modifications and human disease.  Nat Biotechnol. 2010;  28 (10) 1057-1068
  • 10 Choudhuri S. From Waddington's epigenetic landscape to small noncoding RNA: some important milestones in the history of epigenetics research.  Toxicol Mech Methods. 2011;  21 (4) 252-274
  • 11 Nelson E D, Monteggia L M. Epigenetics in the mature mammalian brain: effects on behavior and synaptic transmission.  Neurobiol Learn Mem. 2011;  96 (1) 53-60
  • 12 Guan J S, Haggarty S J, Giacometti E et al.. HDAC2 negatively regulates memory formation and synaptic plasticity.  Nature. 2009;  459 (7243) 55-60
  • 13 Marques S C, Oliveira C R, Pereira C M, Outeiro T F. Epigenetics in neurodegeneration: a new layer of complexity.  Prog Neuropsychopharmacol Biol Psychiatry. 2011;  35 (2) 348-355
  • 14 Bird A P. CpG-rich islands and the function of DNA methylation.  Nature. 1986;  321 (6067) 209-213
  • 15 Holliday R, Pugh J E. DNA modification mechanisms and gene activity during development.  Science. 1975;  187 (4173) 226-232
  • 16 Riggs A D. X inactivation, differentiation, and DNA methylation.  Cytogenet Cell Genet. 1975;  14 (1) 9-25
  • 17 Kalantry S. Recent advances in X-chromosome inactivation.  J Cell Physiol. 2011;  226 (7) 1714-1718
  • 18 Straussman R, Nejman D, Roberts D et al.. Developmental programming of CpG island methylation profiles in the human genome.  Nat Struct Mol Biol. 2009;  16 (5) 564-571
  • 19 Lister R, Pelizzola M, Dowen R H et al.. Human DNA methylomes at base resolution show widespread epigenomic differences.  Nature. 2009;  462 (7271) 315-322
  • 20 Esteller M. Epigenetic gene silencing in cancer: the DNA hypermethylome.  Hum Mol Genet. 2007;  16 (Spec No 1) R50-R59
  • 21 Li B, Carey M, Workman J L. The role of chromatin during transcription.  Cell. 2007;  128 (4) 707-719
  • 22 Mulvihill D J, Nichol Edamura K, Hagerman K A, Pearson C E, Wang Y H. Effect of CAT or AGG interruptions and CpG methylation on nucleosome assembly upon trinucleotide repeats on spinocerebellar ataxia, type 1 and fragile X syndrome.  J Biol Chem. 2005;  280 (6) 4498-4503
  • 23 Wang Y H, Gellibolian R, Shimizu M, Wells R D, Griffith J. Long CCG triplet repeat blocks exclude nucleosomes: a possible mechanism for the nature of fragile sites in chromosomes.  J Mol Biol. 1996;  263 (4) 511-516
  • 24 Turner G, Webb T, Wake S, Robinson H. Prevalence of fragile X syndrome.  Am J Med Genet. 1996;  64 (1) 196-197
  • 25 Hantash F M, Goos D M, Crossley B et al.. FMR1 premutation carrier frequency in patients undergoing routine population-based carrier screening: insights into the prevalence of fragile X syndrome, fragile X-associated tremor/ataxia syndrome, and fragile X-associated primary ovarian insufficiency in the United States.  Genet Med. 2011;  13 (1) 39-45
  • 26 Martin J P, Bell J. A pedigree of mental defect showing sex-linkage.  J Neurol Psychiatry. 1943;  6 (3-4) 154-157
  • 27 Lubs H A. A marker X chromosome.  Am J Hum Genet. 1969;  21 (3) 231-244
  • 28 Sutherland G R. Fragile sites on human chromosomes: demonstration of their dependence on the type of tissue culture medium.  Science. 1977;  197 (4300) 265-266
  • 29 Fu Y H, Kuhl D P, Pizzuti A et al.. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox.  Cell. 1991;  67 (6) 1047-1058
  • 30 Kremer E J, Pritchard M, Lynch M et al.. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n.  Science. 1991;  252 (5013) 1711-1714
  • 31 Verkerk A J, Pieretti M, Sutcliffe J S et al.. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome.  Cell. 1991;  65 (5) 905-914
  • 32 Pieretti M, Zhang F P, Fu Y H et al.. Absence of expression of the FMR-1 gene in fragile X syndrome.  Cell. 1991;  66 (4) 817-822
  • 33 Hagerman R J, Leehey M, Heinrichs W et al.. Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X.  Neurology. 2001;  57 (1) 127-130
  • 34 Jacquemont S, Hagerman R J, Leehey M A et al.. Penetrance of the fragile X-associated tremor/ataxia syndrome in a premutation carrier population.  JAMA. 2004;  291 (4) 460-469
  • 35 Rodriguez-Revenga L, Madrigal I, Pagonabarraga J et al.. Penetrance of FMR1 premutation associated pathologies in fragile X syndrome families.  Eur J Hum Genet. 2009;  17 (10) 1359-1362
  • 36 Berry-Kravis E, Abrams L, Coffey S M et al.. Fragile X-associated tremor/ataxia syndrome: clinical features, genetics, and testing guidelines.  Mov Disord. 2007;  22 (14) 2018-2030, quiz 2140
  • 37 Kaufmann W E, Abrams M T, Chen W, Reiss A L. Genotype, molecular phenotype, and cognitive phenotype: correlations in fragile X syndrome.  Am J Med Genet. 1999;  83 (4) 286-295
  • 38 Primerano B, Tassone F, Hagerman R J, Hagerman P, Amaldi F, Bagni C. Reduced FMR1 mRNA translation efficiency in fragile X patients with premutations.  RNA. 2002;  8 (12) 1482-1488
  • 39 Tassone F, Hagerman R J, Garcia-Arocena D, Khandjian E W, Greco C M, Hagerman P J. Intranuclear inclusions in neural cells with premutation alleles in fragile X associated tremor/ataxia syndrome.  J Med Genet. 2004;  41 (4) e43
  • 40 Entezam A, Biacsi R, Orrison B et al.. Regional FMRP deficits and large repeat expansions into the full mutation range in a new fragile X premutation mouse model.  Gene. 2007;  395 (1-2) 125-134
  • 41 Brouwer J R, Mientjes E J, Bakker C E et al.. Elevated Fmr1 mRNA levels and reduced protein expression in a mouse model with an unmethylated fragile X full mutation.  Exp Cell Res. 2007;  313 (2) 244-253
  • 42 Sherman S L. Premature ovarian failure in the fragile X syndrome.  Am J Med Genet. 2000;  97 (3) 189-194
  • 43 Farzin F, Perry H, Hessl D et al.. Autism spectrum disorders and attention-deficit/hyperactivity disorder in boys with the fragile X premutation.  J Dev Behav Pediatr. 2006;  27 (2, Suppl) S137-S144
  • 44 Sutcliffe J S, Nelson D L, Zhang F et al.. DNA methylation represses FMR-1 transcription in fragile X syndrome.  Hum Mol Genet. 1992;  1 (6) 397-400
  • 45 Oberlé I, Vincent A, Abbadi N et al.. New polymorphism and a new chromosome breakpoint establish the physical and genetic mapping of DXS369 in the DXS98-FRAXA interval.  Am J Med Genet. 1991;  38 (2-3) 336-342
  • 46 Bell M V, Hirst M C, Nakahori Y et al.. Physical mapping across the fragile X: hypermethylation and clinical expression of the fragile X syndrome.  Cell. 1991;  64 (4) 861-866
  • 47 Vincent A, Heitz D, Petit C, Kretz C, Oberlé I, Mandel J L. Abnormal pattern detected in fragile-X patients by pulsed-field gel electrophoresis.  Nature. 1991;  349 (6310) 624-626
  • 48 Coffee B, Zhang F, Warren S T, Reines D. Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells.  Nat Genet. 1999;  22 (1) 98-101
  • 49 Coffee B, Zhang F, Ceman S, Warren S T, Reines D. Histone modifications depict an aberrantly heterochromatinized FMR1 gene in fragile X syndrome.  Am J Hum Genet. 2002;  71 (4) 923-932
  • 50 Pietrobono R, Tabolacci E, Zalfa F et al.. Molecular dissection of the events leading to inactivation of the FMR1 gene.  Hum Mol Genet. 2005;  14 (2) 267-277
  • 51 Kumari D, Usdin K. The distribution of repressive histone modifications on silenced FMR1 alleles provides clues to the mechanism of gene silencing in fragile X syndrome.  Hum Mol Genet. 2010;  19 (23) 4634-4642
  • 52 Tabolacci E, Pietrobono R, Moscato U, Oostra B A, Chiurazzi P, Neri G. Differential epigenetic modifications in the FMR1 gene of the fragile X syndrome after reactivating pharmacological treatments.  Eur J Hum Genet. 2005;  13 (5) 641-648
  • 53 Tabolacci E, Moscato U, Zalfa F, Bagni C, Chiurazzi P, Neri G. Epigenetic analysis reveals a euchromatic configuration in the FMR1 unmethylated full mutations.  Eur J Hum Genet. 2008;  16 (12) 1487-1498
  • 54 Feng Y, Zhang F, Lokey L K et al.. Translational suppression by trinucleotide repeat expansion at FMR1.  Science. 1995;  268 (5211) 731-734
  • 55 Chiurazzi P, Pomponi M G, Willemsen R, Oostra B A, Neri G. In vitro reactivation of the FMR1 gene involved in fragile X syndrome.  Hum Mol Genet. 1998;  7 (1) 109-113
  • 56 Biacsi R, Kumari D, Usdin K. SIRT1 inhibition alleviates gene silencing in fragile X mental retardation syndrome.  PLoS Genet. 2008;  4 (3) e1000017
  • 57 Eiges R, Urbach A, Malcov M et al.. Developmental study of fragile X syndrome using human embryonic stem cells derived from preimplantation genetically diagnosed embryos.  Cell Stem Cell. 2007;  1 (5) 568-577
  • 58 Urbach A, Bar-Nur O, Daley G Q, Benvenisty N. Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells.  Cell Stem Cell. 2010;  6 (5) 407-411
  • 59 Ladd P D, Smith L E, Rabaia N A et al.. An antisense transcript spanning the CGG repeat region of FMR1 is upregulated in premutation carriers but silenced in full mutation individuals.  Hum Mol Genet. 2007;  16 (24) 3174-3187
  • 60 Cho D H, Thienes C P, Mahoney S E, Analau E, Filippova G N, Tapscott S J. Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF.  Mol Cell. 2005;  20 (3) 483-489
  • 61 Morris K V, Chan S W, Jacobsen S E, Looney D J. Small interfering RNA-induced transcriptional gene silencing in human cells.  Science. 2004;  305 (5688) 1289-1292
  • 62 Khalil A M, Faghihi M A, Modarresi F, Brothers S P, Wahlestedt C. A novel RNA transcript with antiapoptotic function is silenced in fragile X syndrome.  PLoS ONE. 2008;  3 (1) e1486
  • 63 Jin P, Zarnescu D C, Zhang F et al.. RNA-mediated neurodegeneration caused by the fragile X premutation rCGG repeats in Drosophila .  Neuron. 2003;  39 (5) 739-747
  • 64 Arocena D G, Iwahashi C K, Won N et al.. Induction of inclusion formation and disruption of lamin A/C structure by premutation CGG-repeat RNA in human cultured neural cells.  Hum Mol Genet. 2005;  14 (23) 3661-3671
  • 65 Handa V, Goldwater D, Stiles D et al.. Long CGG-repeat tracts are toxic to human cells: implications for carriers of fragile X premutation alleles.  FEBS Lett. 2005;  579 (12) 2702-2708
  • 66 Hashem V, Galloway J N, Mori M et al.. Ectopic expression of CGG containing mRNA is neurotoxic in mammals.  Hum Mol Genet. 2009;  18 (13) 2443-2451
  • 67 Tassone F, Beilina A, Carosi C et al.. Elevated FMR1 mRNA in premutation carriers is due to increased transcription.  RNA. 2007;  13 (4) 555-562
  • 68 Todd P K, Oh S Y, Krans A et al.. Histone deacetylases suppress CGG repeat-induced neurodegeneration via transcriptional silencing in models of fragile X tremor ataxia syndrome.  PLoS Genet. 2010;  6 (12) e1001240
  • 69 Chandler S P, Kansagra P, Hirst M C. Fragile X (CGG)n repeats induce a transcriptional repression in cis upon a linked promoter: evidence for a chromatin mediated effect.  BMC Mol Biol. 2003;  4 3
  • 70 Sølvsten C, Nielsen A L. FMR1 CGG repeat lengths mediate different regulation of reporter gene expression in comparative transient and locus specific integration assays.  Gene. 2011;  486 (1-2) 15-22
  • 71 Brouwer J R, Huizer K, Severijnen L A et al.. CGG-repeat length and neuropathological and molecular correlates in a mouse model for fragile X-associated tremor/ataxia syndrome.  J Neurochem. 2008;  107 (6) 1671-1682
  • 72 Modoni A, Silvestri G, Pomponi M G, Mangiola F, Tonali P A, Marra C. Characterization of the pattern of cognitive impairment in myotonic dystrophy type 1.  Arch Neurol. 2004;  61 (12) 1943-1947
  • 73 Brook J D, McCurrach M E, Harley H G et al.. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member.  Cell. 1992;  69 (2) 385
  • 74 Fu Y H, Pizzuti A, Fenwick Jr R G et al.. An unstable triplet repeat in a gene related to myotonic muscular dystrophy.  Science. 1992;  255 (5049) 1256-1258
  • 75 Mahadevan M, Tsilfidis C, Sabourin L et al.. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene.  Science. 1992;  255 (5049) 1253-1255
  • 76 Jansen G, Groenen P J, Bächner D et al.. Abnormal myotonic dystrophy protein kinase levels produce only mild myopathy in mice.  Nat Genet. 1996;  13 (3) 316-324
  • 77 Reddy S, Smith D B, Rich M M et al.. Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy.  Nat Genet. 1996;  13 (3) 325-335
  • 78 Klesert T R, Cho D H, Clark J I et al.. Mice deficient in Six5 develop cataracts: implications for myotonic dystrophy.  Nat Genet. 2000;  25 (1) 105-109
  • 79 Sarkar P S, Appukuttan B, Han J et al.. Heterozygous loss of Six5 in mice is sufficient to cause ocular cataracts.  Nat Genet. 2000;  25 (1) 110-114
  • 80 Filippova G N, Thienes C P, Penn B H et al.. CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus.  Nat Genet. 2001;  28 (4) 335-343
  • 81 Taneja K L, McCurrach M, Schalling M, Housman D, Singer R H. Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues.  J Cell Biol. 1995;  128 (6) 995-1002
  • 82 Mankodi A, Logigian E, Callahan L et al.. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat.  Science. 2000;  289 (5485) 1769-1773
  • 83 Miller J W, Urbinati C R, Teng-Umnuay P et al.. Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy.  EMBO J. 2000;  19 (17) 4439-4448
  • 84 Liquori C L, Ricker K, Moseley M L et al.. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9.  Science. 2001;  293 (5531) 864-867
  • 85 Mankodi A, Urbinati C R, Yuan Q P et al.. Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2.  Hum Mol Genet. 2001;  10 (19) 2165-2170
  • 86 Filippova G N. Genetics and epigenetics of the multifunctional protein CTCF.  Curr Top Dev Biol. 2008;  80 337-360
  • 87 López Castel A, Nakamori M, Tomé S et al.. Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues.  Hum Mol Genet. 2011;  20 (1) 1-15
  • 88 Li L B, Yu Z, Teng X, Bonini N M. RNA toxicity is a component of ataxin-3 degeneration in Drosophila .  Nature. 2008;  453 (7198) 1107-1111
  • 89 Seriola A, Spits C, Simard J P et al.. Huntington's and myotonic dystrophy hESCs: down-regulated trinucleotide repeat instability and mismatch repair machinery expression upon differentiation.  Hum Mol Genet. 2011;  20 (1) 176-185
  • 90 Marteyn A, Maury Y, Gauthier M M et al.. Mutant human embryonic stem cells reveal neurite and synapse formation defects in type 1 myotonic dystrophy.  Cell Stem Cell. 2011;  8 (4) 434-444
  • 91 Nedelsky N B, Pennuto M, Smith R B et al.. Native functions of the androgen receptor are essential to pathogenesis in a Drosophila model of spinobulbar muscular atrophy.  Neuron. 2010;  67 (6) 936-952
  • 92 Duvick L, Barnes J, Ebner B et al.. SCA1-like disease in mice expressing wild-type ataxin-1 with a serine to aspartic acid replacement at residue 776.  Neuron. 2010;  67 (6) 929-935
  • 93 Servadio A, Koshy B, Armstrong D, Antalffy B, Orr H T, Zoghbi H Y. Expression analysis of the ataxin-1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals.  Nat Genet. 1995;  10 (1) 94-98
  • 94 Lin X, Antalffy B, Kang D, Orr H T, Zoghbi H Y. Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1.  Nat Neurosci. 2000;  3 (2) 157-163
  • 95 Serra H G, Byam C E, Lande J D, Tousey S K, Zoghbi H Y, Orr H T. Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells of transgenic mice.  Hum Mol Genet. 2004;  13 (20) 2535-2543
  • 96 Lam Y C, Bowman A B, Jafar-Nejad P et al.. ATAXIN-1 interacts with the repressor Capicua in its native complex to cause SCA1 neuropathology.  Cell. 2006;  127 (7) 1335-1347
  • 97 Serra H G, Duvick L, Zu T et al.. RORalpha-mediated Purkinje cell development determines disease severity in adult SCA1 mice.  Cell. 2006;  127 (4) 697-708
  • 98 Brady M E, Ozanne D M, Gaughan L et al.. Tip60 is a nuclear hormone receptor coactivator.  J Biol Chem. 1999;  274 (25) 17599-17604
  • 99 Gold D A, Baek S H, Schork N J et al.. RORalpha coordinates reciprocal signaling in cerebellar development through sonic hedgehog and calcium-dependent pathways.  Neuron. 2003;  40 (6) 1119-1131
  • 100 Gehrking K M, Andresen J M, Duvick L, Lough J, Zoghbi H Y, Orr H T. Partial loss of Tip60 slows mid-stage neurodegeneration in a spinocerebellar ataxia type 1 (SCA1) mouse model.  Hum Mol Genet. 2011;  20 (11) 2204-2212
  • 101 Enevoldson T P, Sanders M D, Harding A E. Autosomal dominant cerebellar ataxia with pigmentary macular dystrophy. A clinical and genetic study of eight families.  Brain. 1994;  117 (Pt 3) 445-460
  • 102 La Spada A R, Fu Y H, Sopher B L et al.. Polyglutamine-expanded ataxin-7 antagonizes CRX function and induces cone–rod dystrophy in a mouse model of SCA7.  Neuron. 2001;  31 (6) 913-927
  • 103 Yoo S Y, Pennesi M E, Weeber E J et al.. SCA7 knockin mice model human SCA7 and reveal gradual accumulation of mutant ataxin-7 in neurons and abnormalities in short-term plasticity.  Neuron. 2003;  37 (3) 383-401
  • 104 Helmlinger D, Hardy S, Sasorith S et al.. Ataxin-7 is a subunit of GCN5 histone acetyltransferase-containing complexes.  Hum Mol Genet. 2004;  13 (12) 1257-1265
  • 105 Grant P A, Duggan L, Côté J et al.. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex.  Genes Dev. 1997;  11 (13) 1640-1650
  • 106 Helmlinger D, Hardy S, Abou-Sleymane G et al.. Glutamine-expanded ataxin-7 alters TFTC/STAGA recruitment and chromatin structure leading to photoreceptor dysfunction.  PLoS Biol. 2006;  4 (3) e67
  • 107 McMahon S J, Pray-Grant M G, Schieltz D, Yates III J R, Grant P A. Polyglutamine-expanded spinocerebellar ataxia-7 protein disrupts normal SAGA and SLIK histone acetyltransferase activity.  Proc Natl Acad Sci U S A. 2005;  102 (24) 8478-8482
  • 108 Palhan V B, Chen S, Peng G H et al.. Polyglutamine-expanded ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration.  Proc Natl Acad Sci U S A. 2005;  102 (24) 8472-8477
  • 109 Zuccato C, Valenza M, Cattaneo E. Molecular mechanisms and potential therapeutical targets in Huntington's disease.  Physiol Rev. 2010;  90 (3) 905-981
  • 110 Cook T, Gebelein B, Urrutia R. Sp1 and its likes: biochemical and functional predictions for a growing family of zinc finger transcription factors.  Ann N Y Acad Sci. 1999;  880 94-102
  • 111 Dunah A W, Jeong H, Griffin A et al.. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease.  Science. 2002;  296 (5576) 2238-2243
  • 112 Li S H, Cheng A L, Zhou H et al.. Interaction of Huntington disease protein with transcriptional activator Sp1.  Mol Cell Biol. 2002;  22 (5) 1277-1287
  • 113 Chen-Plotkin A S, Sadri-Vakili G, Yohrling G J et al.. Decreased association of the transcription factor Sp1 with genes downregulated in Huntington's disease.  Neurobiol Dis. 2006;  22 (2) 233-241
  • 114 Zuccato C, Tartari M, Crotti A et al.. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes.  Nat Genet. 2003;  35 (1) 76-83
  • 115 Schoenherr C J, Anderson D J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes.  Science. 1995;  267 (5202) 1360-1363
  • 116 Schoenherr C J, Paquette A J, Anderson D J. Identification of potential target genes for the neuron-restrictive silencer factor.  Proc Natl Acad Sci U S A. 1996;  93 (18) 9881-9886
  • 117 Chen Z F, Paquette A J, Anderson D J. NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis.  Nat Genet. 1998;  20 (2) 136-142
  • 118 Ooi L, Wood I C. Chromatin crosstalk in development and disease: lessons from REST.  Nat Rev Genet. 2007;  8 (7) 544-554
  • 119 Zuccato C, Belyaev N, Conforti P et al.. Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington's disease.  J Neurosci. 2007;  27 (26) 6972-6983
  • 120 Tahiliani M, Mei P, Fang R et al.. The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation.  Nature. 2007;  447 (7144) 601-605
  • 121 Mulligan P, Westbrook T F, Ottinger M et al.. CDYL bridges REST and histone methyltransferases for gene repression and suppression of cellular transformation.  Mol Cell. 2008;  32 (5) 718-726
  • 122 Lepagnol-Bestel A M, Zvara A, Maussion G et al.. DYRK1A interacts with the REST/NRSF-SWI/SNF chromatin remodelling complex to deregulate gene clusters involved in the neuronal phenotypic traits of Down syndrome.  Hum Mol Genet. 2009;  18 (8) 1405-1414
  • 123 Chrivia J C, Kwok R P, Lamb N, Hagiwara M, Montminy M R, Goodman R H. Phosphorylated CREB binds specifically to the nuclear protein CBP.  Nature. 1993;  365 (6449) 855-859
  • 124 Kwok R P, Lundblad J R, Chrivia J C et al.. Nuclear protein CBP is a coactivator for the transcription factor CREB.  Nature. 1994;  370 (6486) 223-226
  • 125 Kazantsev A, Preisinger E, Dranovsky A, Goldgaber D, Housman D. Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells.  Proc Natl Acad Sci U S A. 1999;  96 (20) 11404-11409
  • 126 Nucifora Jr F C, Sasaki M, Peters M F et al.. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity.  Science. 2001;  291 (5512) 2423-2428
  • 127 Taylor J P, Taye A A, Campbell C, Kazemi-Esfarjani P, Fischbeck K H, Min K T. Aberrant histone acetylation, altered transcription, and retinal degeneration in a Drosophila model of polyglutamine disease are rescued by CREB-binding protein.  Genes Dev. 2003;  17 (12) 1463-1468
  • 128 Steffan J S, Kazantsev A, Spasic-Boskovic O et al.. The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription.  Proc Natl Acad Sci U S A. 2000;  97 (12) 6763-6768
  • 129 Steffan J S, Bodai L, Pallos J et al.. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila .  Nature. 2001;  413 (6857) 739-743
  • 130 Sadri-Vakili G, Bouzou B, Benn C L et al.. Histones associated with downregulated genes are hypo-acetylated in Huntington's disease models.  Hum Mol Genet. 2007;  16 (11) 1293-1306
  • 131 Dürr A, Cossee M, Agid Y et al.. Clinical and genetic abnormalities in patients with Friedreich's ataxia.  N Engl J Med. 1996;  335 (16) 1169-1175
  • 132 Bidichandani S I, Ashizawa T, Patel P I. The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure.  Am J Hum Genet. 1998;  62 (1) 111-121
  • 133 Herman D, Jenssen K, Burnett R, Soragni E, Perlman S L, Gottesfeld J M. Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia.  Nat Chem Biol. 2006;  2 (10) 551-558
  • 134 Rai M, Soragni E, Jenssen K et al.. HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model.  PLoS ONE. 2008;  3 (4) e1958
  • 135 Rai M, Soragni E, Chou C J et al.. Two new pimelic diphenylamide HDAC inhibitors induce sustained frataxin upregulation in cells from Friedreich's ataxia patients and in a mouse model.  PLoS ONE. 2010;  5 (1) e8825
  • 136 Sandi C, Pinto R M, Al-Mahdawi S et al.. Prolonged treatment with pimelic o-aminobenzamide HDAC inhibitors ameliorates the disease phenotype of a Friedreich ataxia mouse model.  Neurobiol Dis. 2011;  42 (3) 496-505
  • 137 Hodges A, Strand A D, Aragaki A K et al.. Regional and cellular gene expression changes in human Huntington's disease brain.  Hum Mol Genet. 2006;  15 (6) 965-977
  • 138 Hockly E, Richon V M, Woodman B et al.. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease.  Proc Natl Acad Sci U S A. 2003;  100 (4) 2041-2046
  • 139 Pallos J, Bodai L, Lukacsovich T et al.. Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease.  Hum Mol Genet. 2008;  17 (23) 3767-3775
  • 140 Hathorn T, Snyder-Keller A, Messer A. Nicotinamide improves motor deficits and upregulates PGC-1α and BDNF gene expression in a mouse model of Huntington's disease.  Neurobiol Dis. 2011;  41 (1) 43-50
  • 141 Raheem O, Olufemi S E, Bachinski L L et al.. Mutant (CCTG)n expansion causes abnormal expression of zinc finger protein 9 (ZNF9) in myotonic dystrophy type 2.  Am J Pathol. 2010;  177 (6) 3025-3036
  • 142 Winnepenninckx B, Debacker K, Ramsay J et al.. CGG-repeat expansion in the DIP2B gene is associated with the fragile site FRA12A on chromosome 12q13.1  Am J Hum Genet. 2007;  80 (2) 221-231
  • 143 Gécz J, Oostra B A, Hockey A et al.. FMR2 expression in families with FRAXE mental retardation.  Hum Mol Genet. 1997;  6 (3) 435-441
  • 144 Gu Y, Shen Y, Gibbs R A, Nelson D L. Identification of FMR2, a novel gene associated with the FRAXE CCG repeat and CpG island.  Nat Genet. 1996;  13 (1) 109-113
  • 145 Al-Mahdawi S, Pinto R M, Ismail O et al.. The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues.  Hum Mol Genet. 2008;  17 (5) 735-746
  • 146 Campuzano V, Montermini L, Lutz Y et al.. Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes.  Hum Mol Genet. 1997;  6 (11) 1771-1780
  • 147 Lin C H, Chen C M, Hou Y T et al.. The CAG repeat in SCA12 functions as a cis element to up-regulate PPP2R2B expression.  Hum Genet. 2010;  128 (2) 205-212
  • 148 Zhang S, Xu L, Lee J, Xu T. Drosophila atrophin homolog functions as a transcriptional corepressor in multiple developmental processes.  Cell. 2002;  108 (1) 45-56
  • 149 La Spada A R, Wilson E M, Lubahn D B, Harding A E, Fischbeck K H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy.  Nature. 1991;  352 (6330) 77-79
  • 150 Hallen L, Klein H, Stoschek C et al.. The KRAB-containing zinc-finger transcriptional regulator ZBRK1 activates SCA2 gene transcription through direct interaction with its gene product, ataxin-2.  Hum Mol Genet. 2011;  20 (1) 104-114
  • 151 Satterfield T F, Pallanck L J. Ataxin-2 and its Drosophila homolog, ATX2, physically assemble with polyribosomes.  Hum Mol Genet. 2006;  15 (16) 2523-2532
  • 152 Evert B O, Araujo J, Vieira-Saecker A M et al.. Ataxin-3 represses transcription via chromatin binding, interaction with histone deacetylase 3, and histone deacetylation.  J Neurosci. 2006;  26 (44) 11474-11486
  • 153 Burnett B, Li F, Pittman R N. The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity.  Hum Mol Genet. 2003;  12 (23) 3195-3205
  • 154 Kordasiewicz H B, Thompson R M, Clark H B, Gomez C M. C-termini of P/Q-type Ca2+ channel alpha1A subunits translocate to nuclei and promote polyglutamine-mediated toxicity.  Hum Mol Genet. 2006;  15 (10) 1587-1599
  • 155 Zhuchenko O, Bailey J, Bonnen P et al.. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel.  Nat Genet. 1997;  15 (1) 62-69
  • 156 Gill G, Tjian R. Eukaryotic coactivators associated with the TATA box binding protein.  Curr Opin Genet Dev. 1992;  2 (2) 236-242

Peter K. ToddM.D. Ph.D. 

Assistant Professor of Neurology, Department of Neurology, University of Michigan

4001 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109

Email: petertod@umich.edu

    >