RSS-Feed abonnieren
DOI: 10.1055/s-0031-1299786
Epigenetics in Nucleotide Repeat Expansion Disorders
Publikationsverlauf
Publikationsdatum:
21. Januar 2012 (online)

ABSTRACT
Over the past 20 years, nucleotide repeat expansion disorders have informed our broader understanding of neurodevelopmental and neurodegenerative disease. This is especially true with regard to the contributions of epigenetic mechanisms to neurologic disease pathogenesis. In this review, the authors describe a few of the myriad ways in which epigenetic processes underlie aspects of repeat expansion disorder pathophysiology and discuss how therapies targeted at epigenetic modulation hold promise for many of these disorders.
KEYWORDS
Fragile X syndrome - myotonic dystrophy - spinocerebellar ataxia - Huntington's disease - neurodegeneration - HDAC inhibitors
REFERENCES
- 1
Kumari D, Usdin K.
Chromatin remodeling in the noncoding repeat expansion diseases.
J Biol Chem.
2009;
284
(12)
7413-7417
MissingFormLabel
- 2
Campuzano V, Montermini L, Moltò M D et al..
Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet
repeat expansion.
Science.
1996;
271
(5254)
1423-1427
MissingFormLabel
- 3
Orr H T, Zoghbi H Y.
Trinucleotide repeat disorders.
Annu Rev Neurosci.
2007;
30
575-621
MissingFormLabel
- 4
Williams A J, Paulson H L.
Polyglutamine neurodegeneration: protein misfolding revisited.
Trends Neurosci.
2008;
31
(10)
521-528
MissingFormLabel
- 5
Todd P K, Paulson H L.
RNA-mediated neurodegeneration in repeat expansion disorders.
Ann Neurol.
2010;
67
(3)
291-300
MissingFormLabel
- 6
Wheeler T M, Thornton C A.
Myotonic dystrophy: RNA-mediated muscle disease.
Curr Opin Neurol.
2007;
20
(5)
572-576
MissingFormLabel
- 7
Cho D H, Tapscott S J.
Myotonic dystrophy: emerging mechanisms for DM1 and DM2.
Biochim Biophys Acta.
2007;
1772
(2)
195-204
MissingFormLabel
- 8
Riley B E, Orr H T.
Polyglutamine neurodegenerative diseases and regulation of transcription: assembling
the puzzle.
Genes Dev.
2006;
20
(16)
2183-2192
MissingFormLabel
- 9
Portela A, Esteller M.
Epigenetic modifications and human disease.
Nat Biotechnol.
2010;
28
(10)
1057-1068
MissingFormLabel
- 10
Choudhuri S.
From Waddington's epigenetic landscape to small noncoding RNA: some important milestones
in the history of epigenetics research.
Toxicol Mech Methods.
2011;
21
(4)
252-274
MissingFormLabel
- 11
Nelson E D, Monteggia L M.
Epigenetics in the mature mammalian brain: effects on behavior and synaptic transmission.
Neurobiol Learn Mem.
2011;
96
(1)
53-60
MissingFormLabel
- 12
Guan J S, Haggarty S J, Giacometti E et al..
HDAC2 negatively regulates memory formation and synaptic plasticity.
Nature.
2009;
459
(7243)
55-60
MissingFormLabel
- 13
Marques S C, Oliveira C R, Pereira C M, Outeiro T F.
Epigenetics in neurodegeneration: a new layer of complexity.
Prog Neuropsychopharmacol Biol Psychiatry.
2011;
35
(2)
348-355
MissingFormLabel
- 14
Bird A P.
CpG-rich islands and the function of DNA methylation.
Nature.
1986;
321
(6067)
209-213
MissingFormLabel
- 15
Holliday R, Pugh J E.
DNA modification mechanisms and gene activity during development.
Science.
1975;
187
(4173)
226-232
MissingFormLabel
- 16
Riggs A D.
X inactivation, differentiation, and DNA methylation.
Cytogenet Cell Genet.
1975;
14
(1)
9-25
MissingFormLabel
- 17
Kalantry S.
Recent advances in X-chromosome inactivation.
J Cell Physiol.
2011;
226
(7)
1714-1718
MissingFormLabel
- 18
Straussman R, Nejman D, Roberts D et al..
Developmental programming of CpG island methylation profiles in the human genome.
Nat Struct Mol Biol.
2009;
16
(5)
564-571
MissingFormLabel
- 19
Lister R, Pelizzola M, Dowen R H et al..
Human DNA methylomes at base resolution show widespread epigenomic differences.
Nature.
2009;
462
(7271)
315-322
MissingFormLabel
- 20
Esteller M.
Epigenetic gene silencing in cancer: the DNA hypermethylome.
Hum Mol Genet.
2007;
16
(Spec No 1)
R50-R59
MissingFormLabel
- 21
Li B, Carey M, Workman J L.
The role of chromatin during transcription.
Cell.
2007;
128
(4)
707-719
MissingFormLabel
- 22
Mulvihill D J, Nichol Edamura K, Hagerman K A, Pearson C E, Wang Y H.
Effect of CAT or AGG interruptions and CpG methylation on nucleosome assembly upon
trinucleotide repeats on spinocerebellar ataxia, type 1 and fragile X syndrome.
J Biol Chem.
2005;
280
(6)
4498-4503
MissingFormLabel
- 23
Wang Y H, Gellibolian R, Shimizu M, Wells R D, Griffith J.
Long CCG triplet repeat blocks exclude nucleosomes: a possible mechanism for the nature
of fragile sites in chromosomes.
J Mol Biol.
1996;
263
(4)
511-516
MissingFormLabel
- 24
Turner G, Webb T, Wake S, Robinson H.
Prevalence of fragile X syndrome.
Am J Med Genet.
1996;
64
(1)
196-197
MissingFormLabel
- 25
Hantash F M, Goos D M, Crossley B et al..
FMR1 premutation carrier frequency in patients undergoing routine population-based
carrier screening: insights into the prevalence of fragile X syndrome, fragile X-associated
tremor/ataxia syndrome, and fragile X-associated primary ovarian insufficiency in
the United States.
Genet Med.
2011;
13
(1)
39-45
MissingFormLabel
- 26
Martin J P, Bell J.
A pedigree of mental defect showing sex-linkage.
J Neurol Psychiatry.
1943;
6
(3-4)
154-157
MissingFormLabel
- 27
Lubs H A.
A marker X chromosome.
Am J Hum Genet.
1969;
21
(3)
231-244
MissingFormLabel
- 28
Sutherland G R.
Fragile sites on human chromosomes: demonstration of their dependence on the type
of tissue culture medium.
Science.
1977;
197
(4300)
265-266
MissingFormLabel
- 29
Fu Y H, Kuhl D P, Pizzuti A et al..
Variation of the CGG repeat at the fragile X site results in genetic instability:
resolution of the Sherman paradox.
Cell.
1991;
67
(6)
1047-1058
MissingFormLabel
- 30
Kremer E J, Pritchard M, Lynch M et al..
Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n.
Science.
1991;
252
(5013)
1711-1714
MissingFormLabel
- 31
Verkerk A J, Pieretti M, Sutcliffe J S et al..
Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint
cluster region exhibiting length variation in fragile X syndrome.
Cell.
1991;
65
(5)
905-914
MissingFormLabel
- 32
Pieretti M, Zhang F P, Fu Y H et al..
Absence of expression of the FMR-1 gene in fragile X syndrome.
Cell.
1991;
66
(4)
817-822
MissingFormLabel
- 33
Hagerman R J, Leehey M, Heinrichs W et al..
Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of
fragile X.
Neurology.
2001;
57
(1)
127-130
MissingFormLabel
- 34
Jacquemont S, Hagerman R J, Leehey M A et al..
Penetrance of the fragile X-associated tremor/ataxia syndrome in a premutation carrier
population.
JAMA.
2004;
291
(4)
460-469
MissingFormLabel
- 35
Rodriguez-Revenga L, Madrigal I, Pagonabarraga J et al..
Penetrance of FMR1 premutation associated pathologies in fragile X syndrome families.
Eur J Hum Genet.
2009;
17
(10)
1359-1362
MissingFormLabel
- 36
Berry-Kravis E, Abrams L, Coffey S M et al..
Fragile X-associated tremor/ataxia syndrome: clinical features, genetics, and testing
guidelines.
Mov Disord.
2007;
22
(14)
2018-2030, quiz 2140
MissingFormLabel
- 37
Kaufmann W E, Abrams M T, Chen W, Reiss A L.
Genotype, molecular phenotype, and cognitive phenotype: correlations in fragile X
syndrome.
Am J Med Genet.
1999;
83
(4)
286-295
MissingFormLabel
- 38
Primerano B, Tassone F, Hagerman R J, Hagerman P, Amaldi F, Bagni C.
Reduced FMR1 mRNA translation efficiency in fragile X patients with premutations.
RNA.
2002;
8
(12)
1482-1488
MissingFormLabel
- 39
Tassone F, Hagerman R J, Garcia-Arocena D, Khandjian E W, Greco C M, Hagerman P J.
Intranuclear inclusions in neural cells with premutation alleles in fragile X associated
tremor/ataxia syndrome.
J Med Genet.
2004;
41
(4)
e43
MissingFormLabel
- 40
Entezam A, Biacsi R, Orrison B et al..
Regional FMRP deficits and large repeat expansions into the full mutation range in
a new fragile X premutation mouse model.
Gene.
2007;
395
(1-2)
125-134
MissingFormLabel
- 41
Brouwer J R, Mientjes E J, Bakker C E et al..
Elevated Fmr1 mRNA levels and reduced protein expression in a mouse model with an
unmethylated fragile X full mutation.
Exp Cell Res.
2007;
313
(2)
244-253
MissingFormLabel
- 42
Sherman S L.
Premature ovarian failure in the fragile X syndrome.
Am J Med Genet.
2000;
97
(3)
189-194
MissingFormLabel
- 43
Farzin F, Perry H, Hessl D et al..
Autism spectrum disorders and attention-deficit/hyperactivity disorder in boys with
the fragile X premutation.
J Dev Behav Pediatr.
2006;
27
(2, Suppl)
S137-S144
MissingFormLabel
- 44
Sutcliffe J S, Nelson D L, Zhang F et al..
DNA methylation represses FMR-1 transcription in fragile X syndrome.
Hum Mol Genet.
1992;
1
(6)
397-400
MissingFormLabel
- 45
Oberlé I, Vincent A, Abbadi N et al..
New polymorphism and a new chromosome breakpoint establish the physical and genetic
mapping of DXS369 in the DXS98-FRAXA interval.
Am J Med Genet.
1991;
38
(2-3)
336-342
MissingFormLabel
- 46
Bell M V, Hirst M C, Nakahori Y et al..
Physical mapping across the fragile X: hypermethylation and clinical expression of
the fragile X syndrome.
Cell.
1991;
64
(4)
861-866
MissingFormLabel
- 47
Vincent A, Heitz D, Petit C, Kretz C, Oberlé I, Mandel J L.
Abnormal pattern detected in fragile-X patients by pulsed-field gel electrophoresis.
Nature.
1991;
349
(6310)
624-626
MissingFormLabel
- 48
Coffee B, Zhang F, Warren S T, Reines D.
Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome
cells.
Nat Genet.
1999;
22
(1)
98-101
MissingFormLabel
- 49
Coffee B, Zhang F, Ceman S, Warren S T, Reines D.
Histone modifications depict an aberrantly heterochromatinized FMR1 gene in fragile
X syndrome.
Am J Hum Genet.
2002;
71
(4)
923-932
MissingFormLabel
- 50
Pietrobono R, Tabolacci E, Zalfa F et al..
Molecular dissection of the events leading to inactivation of the FMR1 gene.
Hum Mol Genet.
2005;
14
(2)
267-277
MissingFormLabel
- 51
Kumari D, Usdin K.
The distribution of repressive histone modifications on silenced FMR1 alleles provides
clues to the mechanism of gene silencing in fragile X syndrome.
Hum Mol Genet.
2010;
19
(23)
4634-4642
MissingFormLabel
- 52
Tabolacci E, Pietrobono R, Moscato U, Oostra B A, Chiurazzi P, Neri G.
Differential epigenetic modifications in the FMR1 gene of the fragile X syndrome after
reactivating pharmacological treatments.
Eur J Hum Genet.
2005;
13
(5)
641-648
MissingFormLabel
- 53
Tabolacci E, Moscato U, Zalfa F, Bagni C, Chiurazzi P, Neri G.
Epigenetic analysis reveals a euchromatic configuration in the FMR1 unmethylated full
mutations.
Eur J Hum Genet.
2008;
16
(12)
1487-1498
MissingFormLabel
- 54
Feng Y, Zhang F, Lokey L K et al..
Translational suppression by trinucleotide repeat expansion at FMR1.
Science.
1995;
268
(5211)
731-734
MissingFormLabel
- 55
Chiurazzi P, Pomponi M G, Willemsen R, Oostra B A, Neri G.
In vitro reactivation of the FMR1 gene involved in fragile X syndrome.
Hum Mol Genet.
1998;
7
(1)
109-113
MissingFormLabel
- 56
Biacsi R, Kumari D, Usdin K.
SIRT1 inhibition alleviates gene silencing in fragile X mental retardation syndrome.
PLoS Genet.
2008;
4
(3)
e1000017
MissingFormLabel
- 57
Eiges R, Urbach A, Malcov M et al..
Developmental study of fragile X syndrome using human embryonic stem cells derived
from preimplantation genetically diagnosed embryos.
Cell Stem Cell.
2007;
1
(5)
568-577
MissingFormLabel
- 58
Urbach A, Bar-Nur O, Daley G Q, Benvenisty N.
Differential modeling of fragile X syndrome by human embryonic stem cells and induced
pluripotent stem cells.
Cell Stem Cell.
2010;
6
(5)
407-411
MissingFormLabel
- 59
Ladd P D, Smith L E, Rabaia N A et al..
An antisense transcript spanning the CGG repeat region of FMR1 is upregulated in premutation
carriers but silenced in full mutation individuals.
Hum Mol Genet.
2007;
16
(24)
3174-3187
MissingFormLabel
- 60
Cho D H, Thienes C P, Mahoney S E, Analau E, Filippova G N, Tapscott S J.
Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained
by CTCF.
Mol Cell.
2005;
20
(3)
483-489
MissingFormLabel
- 61
Morris K V, Chan S W, Jacobsen S E, Looney D J.
Small interfering RNA-induced transcriptional gene silencing in human cells.
Science.
2004;
305
(5688)
1289-1292
MissingFormLabel
- 62
Khalil A M, Faghihi M A, Modarresi F, Brothers S P, Wahlestedt C.
A novel RNA transcript with antiapoptotic function is silenced in fragile X syndrome.
PLoS ONE.
2008;
3
(1)
e1486
MissingFormLabel
- 63
Jin P, Zarnescu D C, Zhang F et al..
RNA-mediated neurodegeneration caused by the fragile X premutation rCGG repeats in
Drosophila
.
Neuron.
2003;
39
(5)
739-747
MissingFormLabel
- 64
Arocena D G, Iwahashi C K, Won N et al..
Induction of inclusion formation and disruption of lamin A/C structure by premutation
CGG-repeat RNA in human cultured neural cells.
Hum Mol Genet.
2005;
14
(23)
3661-3671
MissingFormLabel
- 65
Handa V, Goldwater D, Stiles D et al..
Long CGG-repeat tracts are toxic to human cells: implications for carriers of fragile
X premutation alleles.
FEBS Lett.
2005;
579
(12)
2702-2708
MissingFormLabel
- 66
Hashem V, Galloway J N, Mori M et al..
Ectopic expression of CGG containing mRNA is neurotoxic in mammals.
Hum Mol Genet.
2009;
18
(13)
2443-2451
MissingFormLabel
- 67
Tassone F, Beilina A, Carosi C et al..
Elevated FMR1 mRNA in premutation carriers is due to increased transcription.
RNA.
2007;
13
(4)
555-562
MissingFormLabel
- 68
Todd P K, Oh S Y, Krans A et al..
Histone deacetylases suppress CGG repeat-induced neurodegeneration via transcriptional
silencing in models of fragile X tremor ataxia syndrome.
PLoS Genet.
2010;
6
(12)
e1001240
MissingFormLabel
- 69
Chandler S P, Kansagra P, Hirst M C.
Fragile X (CGG)n repeats induce a transcriptional repression in cis upon a linked promoter: evidence for a chromatin mediated effect.
BMC Mol Biol.
2003;
4
3
MissingFormLabel
- 70
Sølvsten C, Nielsen A L.
FMR1 CGG repeat lengths mediate different regulation of reporter gene expression in
comparative transient and locus specific integration assays.
Gene.
2011;
486
(1-2)
15-22
MissingFormLabel
- 71
Brouwer J R, Huizer K, Severijnen L A et al..
CGG-repeat length and neuropathological and molecular correlates in a mouse model
for fragile X-associated tremor/ataxia syndrome.
J Neurochem.
2008;
107
(6)
1671-1682
MissingFormLabel
- 72
Modoni A, Silvestri G, Pomponi M G, Mangiola F, Tonali P A, Marra C.
Characterization of the pattern of cognitive impairment in myotonic dystrophy type
1.
Arch Neurol.
2004;
61
(12)
1943-1947
MissingFormLabel
- 73
Brook J D, McCurrach M E, Harley H G et al..
Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at
the 3′ end of a transcript encoding a protein kinase family member.
Cell.
1992;
69
(2)
385
MissingFormLabel
- 74
Fu Y H, Pizzuti A, Fenwick Jr R G et al..
An unstable triplet repeat in a gene related to myotonic muscular dystrophy.
Science.
1992;
255
(5049)
1256-1258
MissingFormLabel
- 75
Mahadevan M, Tsilfidis C, Sabourin L et al..
Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region
of the gene.
Science.
1992;
255
(5049)
1253-1255
MissingFormLabel
- 76
Jansen G, Groenen P J, Bächner D et al..
Abnormal myotonic dystrophy protein kinase levels produce only mild myopathy in mice.
Nat Genet.
1996;
13
(3)
316-324
MissingFormLabel
- 77
Reddy S, Smith D B, Rich M M et al..
Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive
myopathy.
Nat Genet.
1996;
13
(3)
325-335
MissingFormLabel
- 78
Klesert T R, Cho D H, Clark J I et al..
Mice deficient in Six5 develop cataracts: implications for myotonic dystrophy.
Nat Genet.
2000;
25
(1)
105-109
MissingFormLabel
- 79
Sarkar P S, Appukuttan B, Han J et al..
Heterozygous loss of Six5 in mice is sufficient to cause ocular cataracts.
Nat Genet.
2000;
25
(1)
110-114
MissingFormLabel
- 80
Filippova G N, Thienes C P, Penn B H et al..
CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator
at the DM1 locus.
Nat Genet.
2001;
28
(4)
335-343
MissingFormLabel
- 81
Taneja K L, McCurrach M, Schalling M, Housman D, Singer R H.
Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and
tissues.
J Cell Biol.
1995;
128
(6)
995-1002
MissingFormLabel
- 82
Mankodi A, Logigian E, Callahan L et al..
Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat.
Science.
2000;
289
(5485)
1769-1773
MissingFormLabel
- 83
Miller J W, Urbinati C R, Teng-Umnuay P et al..
Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic
dystrophy.
EMBO J.
2000;
19
(17)
4439-4448
MissingFormLabel
- 84
Liquori C L, Ricker K, Moseley M L et al..
Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9.
Science.
2001;
293
(5531)
864-867
MissingFormLabel
- 85
Mankodi A, Urbinati C R, Yuan Q P et al..
Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types
1 and 2.
Hum Mol Genet.
2001;
10
(19)
2165-2170
MissingFormLabel
- 86
Filippova G N.
Genetics and epigenetics of the multifunctional protein CTCF.
Curr Top Dev Biol.
2008;
80
337-360
MissingFormLabel
- 87
López Castel A, Nakamori M, Tomé S et al..
Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic
dystrophy patient tissues.
Hum Mol Genet.
2011;
20
(1)
1-15
MissingFormLabel
- 88
Li L B, Yu Z, Teng X, Bonini N M.
RNA toxicity is a component of ataxin-3 degeneration in Drosophila
.
Nature.
2008;
453
(7198)
1107-1111
MissingFormLabel
- 89
Seriola A, Spits C, Simard J P et al..
Huntington's and myotonic dystrophy hESCs: down-regulated trinucleotide repeat instability
and mismatch repair machinery expression upon differentiation.
Hum Mol Genet.
2011;
20
(1)
176-185
MissingFormLabel
- 90
Marteyn A, Maury Y, Gauthier M M et al..
Mutant human embryonic stem cells reveal neurite and synapse formation defects in
type 1 myotonic dystrophy.
Cell Stem Cell.
2011;
8
(4)
434-444
MissingFormLabel
- 91
Nedelsky N B, Pennuto M, Smith R B et al..
Native functions of the androgen receptor are essential to pathogenesis in a Drosophila model of spinobulbar muscular atrophy.
Neuron.
2010;
67
(6)
936-952
MissingFormLabel
- 92
Duvick L, Barnes J, Ebner B et al..
SCA1-like disease in mice expressing wild-type ataxin-1 with a serine to aspartic
acid replacement at residue 776.
Neuron.
2010;
67
(6)
929-935
MissingFormLabel
- 93
Servadio A, Koshy B, Armstrong D, Antalffy B, Orr H T, Zoghbi H Y.
Expression analysis of the ataxin-1 protein in tissues from normal and spinocerebellar
ataxia type 1 individuals.
Nat Genet.
1995;
10
(1)
94-98
MissingFormLabel
- 94
Lin X, Antalffy B, Kang D, Orr H T, Zoghbi H Y.
Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes
in SCA1.
Nat Neurosci.
2000;
3
(2)
157-163
MissingFormLabel
- 95
Serra H G, Byam C E, Lande J D, Tousey S K, Zoghbi H Y, Orr H T.
Gene profiling links SCA1 pathophysiology to glutamate signaling in Purkinje cells
of transgenic mice.
Hum Mol Genet.
2004;
13
(20)
2535-2543
MissingFormLabel
- 96
Lam Y C, Bowman A B, Jafar-Nejad P et al..
ATAXIN-1 interacts with the repressor Capicua in its native complex to cause SCA1
neuropathology.
Cell.
2006;
127
(7)
1335-1347
MissingFormLabel
- 97
Serra H G, Duvick L, Zu T et al..
RORalpha-mediated Purkinje cell development determines disease severity in adult SCA1
mice.
Cell.
2006;
127
(4)
697-708
MissingFormLabel
- 98
Brady M E, Ozanne D M, Gaughan L et al..
Tip60 is a nuclear hormone receptor coactivator.
J Biol Chem.
1999;
274
(25)
17599-17604
MissingFormLabel
- 99
Gold D A, Baek S H, Schork N J et al..
RORalpha coordinates reciprocal signaling in cerebellar development through sonic
hedgehog and calcium-dependent pathways.
Neuron.
2003;
40
(6)
1119-1131
MissingFormLabel
- 100
Gehrking K M, Andresen J M, Duvick L, Lough J, Zoghbi H Y, Orr H T.
Partial loss of Tip60 slows mid-stage neurodegeneration in a spinocerebellar ataxia
type 1 (SCA1) mouse model.
Hum Mol Genet.
2011;
20
(11)
2204-2212
MissingFormLabel
- 101
Enevoldson T P, Sanders M D, Harding A E.
Autosomal dominant cerebellar ataxia with pigmentary macular dystrophy. A clinical
and genetic study of eight families.
Brain.
1994;
117
(Pt 3)
445-460
MissingFormLabel
- 102
La Spada A R, Fu Y H, Sopher B L et al..
Polyglutamine-expanded ataxin-7 antagonizes CRX function and induces cone–rod dystrophy
in a mouse model of SCA7.
Neuron.
2001;
31
(6)
913-927
MissingFormLabel
- 103
Yoo S Y, Pennesi M E, Weeber E J et al..
SCA7 knockin mice model human SCA7 and reveal gradual accumulation of mutant ataxin-7
in neurons and abnormalities in short-term plasticity.
Neuron.
2003;
37
(3)
383-401
MissingFormLabel
- 104
Helmlinger D, Hardy S, Sasorith S et al..
Ataxin-7 is a subunit of GCN5 histone acetyltransferase-containing complexes.
Hum Mol Genet.
2004;
13
(12)
1257-1265
MissingFormLabel
- 105
Grant P A, Duggan L, Côté J et al..
Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones:
characterization of an Ada complex and the SAGA (Spt/Ada) complex.
Genes Dev.
1997;
11
(13)
1640-1650
MissingFormLabel
- 106
Helmlinger D, Hardy S, Abou-Sleymane G et al..
Glutamine-expanded ataxin-7 alters TFTC/STAGA recruitment and chromatin structure
leading to photoreceptor dysfunction.
PLoS Biol.
2006;
4
(3)
e67
MissingFormLabel
- 107
McMahon S J, Pray-Grant M G, Schieltz D, Yates III J R, Grant P A.
Polyglutamine-expanded spinocerebellar ataxia-7 protein disrupts normal SAGA and SLIK
histone acetyltransferase activity.
Proc Natl Acad Sci U S A.
2005;
102
(24)
8478-8482
MissingFormLabel
- 108
Palhan V B, Chen S, Peng G H et al..
Polyglutamine-expanded ataxin-7 inhibits STAGA histone acetyltransferase activity
to produce retinal degeneration.
Proc Natl Acad Sci U S A.
2005;
102
(24)
8472-8477
MissingFormLabel
- 109
Zuccato C, Valenza M, Cattaneo E.
Molecular mechanisms and potential therapeutical targets in Huntington's disease.
Physiol Rev.
2010;
90
(3)
905-981
MissingFormLabel
- 110
Cook T, Gebelein B, Urrutia R.
Sp1 and its likes: biochemical and functional predictions for a growing family of
zinc finger transcription factors.
Ann N Y Acad Sci.
1999;
880
94-102
MissingFormLabel
- 111
Dunah A W, Jeong H, Griffin A et al..
Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease.
Science.
2002;
296
(5576)
2238-2243
MissingFormLabel
- 112
Li S H, Cheng A L, Zhou H et al..
Interaction of Huntington disease protein with transcriptional activator Sp1.
Mol Cell Biol.
2002;
22
(5)
1277-1287
MissingFormLabel
- 113
Chen-Plotkin A S, Sadri-Vakili G, Yohrling G J et al..
Decreased association of the transcription factor Sp1 with genes downregulated in
Huntington's disease.
Neurobiol Dis.
2006;
22
(2)
233-241
MissingFormLabel
- 114
Zuccato C, Tartari M, Crotti A et al..
Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled
neuronal genes.
Nat Genet.
2003;
35
(1)
76-83
MissingFormLabel
- 115
Schoenherr C J, Anderson D J.
The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple
neuron-specific genes.
Science.
1995;
267
(5202)
1360-1363
MissingFormLabel
- 116
Schoenherr C J, Paquette A J, Anderson D J.
Identification of potential target genes for the neuron-restrictive silencer factor.
Proc Natl Acad Sci U S A.
1996;
93
(18)
9881-9886
MissingFormLabel
- 117
Chen Z F, Paquette A J, Anderson D J.
NRSF/REST is required in vivo for repression of multiple neuronal target genes during
embryogenesis.
Nat Genet.
1998;
20
(2)
136-142
MissingFormLabel
- 118
Ooi L, Wood I C.
Chromatin crosstalk in development and disease: lessons from REST.
Nat Rev Genet.
2007;
8
(7)
544-554
MissingFormLabel
- 119
Zuccato C, Belyaev N, Conforti P et al..
Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive
silencer factor occupancy at its target genes in Huntington's disease.
J Neurosci.
2007;
27
(26)
6972-6983
MissingFormLabel
- 120
Tahiliani M, Mei P, Fang R et al..
The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation.
Nature.
2007;
447
(7144)
601-605
MissingFormLabel
- 121
Mulligan P, Westbrook T F, Ottinger M et al..
CDYL bridges REST and histone methyltransferases for gene repression and suppression
of cellular transformation.
Mol Cell.
2008;
32
(5)
718-726
MissingFormLabel
- 122
Lepagnol-Bestel A M, Zvara A, Maussion G et al..
DYRK1A interacts with the REST/NRSF-SWI/SNF chromatin remodelling complex to deregulate
gene clusters involved in the neuronal phenotypic traits of Down syndrome.
Hum Mol Genet.
2009;
18
(8)
1405-1414
MissingFormLabel
- 123
Chrivia J C, Kwok R P, Lamb N, Hagiwara M, Montminy M R, Goodman R H.
Phosphorylated CREB binds specifically to the nuclear protein CBP.
Nature.
1993;
365
(6449)
855-859
MissingFormLabel
- 124
Kwok R P, Lundblad J R, Chrivia J C et al..
Nuclear protein CBP is a coactivator for the transcription factor CREB.
Nature.
1994;
370
(6486)
223-226
MissingFormLabel
- 125
Kazantsev A, Preisinger E, Dranovsky A, Goldgaber D, Housman D.
Insoluble detergent-resistant aggregates form between pathological and nonpathological
lengths of polyglutamine in mammalian cells.
Proc Natl Acad Sci U S A.
1999;
96
(20)
11404-11409
MissingFormLabel
- 126
Nucifora Jr F C, Sasaki M, Peters M F et al..
Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading
to cellular toxicity.
Science.
2001;
291
(5512)
2423-2428
MissingFormLabel
- 127
Taylor J P, Taye A A, Campbell C, Kazemi-Esfarjani P, Fischbeck K H, Min K T.
Aberrant histone acetylation, altered transcription, and retinal degeneration in a
Drosophila model of polyglutamine disease are rescued by CREB-binding protein.
Genes Dev.
2003;
17
(12)
1463-1468
MissingFormLabel
- 128
Steffan J S, Kazantsev A, Spasic-Boskovic O et al..
The Huntington's disease protein interacts with p53 and CREB-binding protein and represses
transcription.
Proc Natl Acad Sci U S A.
2000;
97
(12)
6763-6768
MissingFormLabel
- 129
Steffan J S, Bodai L, Pallos J et al..
Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in
Drosophila
.
Nature.
2001;
413
(6857)
739-743
MissingFormLabel
- 130
Sadri-Vakili G, Bouzou B, Benn C L et al..
Histones associated with downregulated genes are hypo-acetylated in Huntington's disease
models.
Hum Mol Genet.
2007;
16
(11)
1293-1306
MissingFormLabel
- 131
Dürr A, Cossee M, Agid Y et al..
Clinical and genetic abnormalities in patients with Friedreich's ataxia.
N Engl J Med.
1996;
335
(16)
1169-1175
MissingFormLabel
- 132
Bidichandani S I, Ashizawa T, Patel P I.
The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription
and may be associated with an unusual DNA structure.
Am J Hum Genet.
1998;
62
(1)
111-121
MissingFormLabel
- 133
Herman D, Jenssen K, Burnett R, Soragni E, Perlman S L, Gottesfeld J M.
Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia.
Nat Chem Biol.
2006;
2
(10)
551-558
MissingFormLabel
- 134
Rai M, Soragni E, Jenssen K et al..
HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model.
PLoS ONE.
2008;
3
(4)
e1958
MissingFormLabel
- 135
Rai M, Soragni E, Chou C J et al..
Two new pimelic diphenylamide HDAC inhibitors induce sustained frataxin upregulation
in cells from Friedreich's ataxia patients and in a mouse model.
PLoS ONE.
2010;
5
(1)
e8825
MissingFormLabel
- 136
Sandi C, Pinto R M, Al-Mahdawi S et al..
Prolonged treatment with pimelic o-aminobenzamide HDAC inhibitors ameliorates the
disease phenotype of a Friedreich ataxia mouse model.
Neurobiol Dis.
2011;
42
(3)
496-505
MissingFormLabel
- 137
Hodges A, Strand A D, Aragaki A K et al..
Regional and cellular gene expression changes in human Huntington's disease brain.
Hum Mol Genet.
2006;
15
(6)
965-977
MissingFormLabel
- 138
Hockly E, Richon V M, Woodman B et al..
Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor
deficits in a mouse model of Huntington's disease.
Proc Natl Acad Sci U S A.
2003;
100
(4)
2041-2046
MissingFormLabel
- 139
Pallos J, Bodai L, Lukacsovich T et al..
Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington's disease.
Hum Mol Genet.
2008;
17
(23)
3767-3775
MissingFormLabel
- 140
Hathorn T, Snyder-Keller A, Messer A.
Nicotinamide improves motor deficits and upregulates PGC-1α and BDNF gene expression
in a mouse model of Huntington's disease.
Neurobiol Dis.
2011;
41
(1)
43-50
MissingFormLabel
- 141
Raheem O, Olufemi S E, Bachinski L L et al..
Mutant (CCTG)n expansion causes abnormal expression of zinc finger protein 9 (ZNF9)
in myotonic dystrophy type 2.
Am J Pathol.
2010;
177
(6)
3025-3036
MissingFormLabel
- 142
Winnepenninckx B, Debacker K, Ramsay J et al..
CGG-repeat expansion in the DIP2B gene is associated with the fragile site FRA12A
on chromosome 12q13.1
Am J Hum Genet.
2007;
80
(2)
221-231
MissingFormLabel
- 143
Gécz J, Oostra B A, Hockey A et al..
FMR2 expression in families with FRAXE mental retardation.
Hum Mol Genet.
1997;
6
(3)
435-441
MissingFormLabel
- 144
Gu Y, Shen Y, Gibbs R A, Nelson D L.
Identification of FMR2, a novel gene associated with the FRAXE CCG repeat and CpG
island.
Nat Genet.
1996;
13
(1)
109-113
MissingFormLabel
- 145
Al-Mahdawi S, Pinto R M, Ismail O et al..
The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic
changes in human and transgenic mouse brain and heart tissues.
Hum Mol Genet.
2008;
17
(5)
735-746
MissingFormLabel
- 146
Campuzano V, Montermini L, Lutz Y et al..
Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial
membranes.
Hum Mol Genet.
1997;
6
(11)
1771-1780
MissingFormLabel
- 147
Lin C H, Chen C M, Hou Y T et al..
The CAG repeat in SCA12 functions as a cis element to up-regulate PPP2R2B expression.
Hum Genet.
2010;
128
(2)
205-212
MissingFormLabel
- 148
Zhang S, Xu L, Lee J, Xu T.
Drosophila atrophin homolog functions as a transcriptional corepressor in multiple developmental
processes.
Cell.
2002;
108
(1)
45-56
MissingFormLabel
- 149
La Spada A R, Wilson E M, Lubahn D B, Harding A E, Fischbeck K H.
Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy.
Nature.
1991;
352
(6330)
77-79
MissingFormLabel
- 150
Hallen L, Klein H, Stoschek C et al..
The KRAB-containing zinc-finger transcriptional regulator ZBRK1 activates SCA2 gene
transcription through direct interaction with its gene product, ataxin-2.
Hum Mol Genet.
2011;
20
(1)
104-114
MissingFormLabel
- 151
Satterfield T F, Pallanck L J.
Ataxin-2 and its Drosophila homolog, ATX2, physically assemble with polyribosomes.
Hum Mol Genet.
2006;
15
(16)
2523-2532
MissingFormLabel
- 152
Evert B O, Araujo J, Vieira-Saecker A M et al..
Ataxin-3 represses transcription via chromatin binding, interaction with histone deacetylase
3, and histone deacetylation.
J Neurosci.
2006;
26
(44)
11474-11486
MissingFormLabel
- 153
Burnett B, Li F, Pittman R N.
The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins
and has ubiquitin protease activity.
Hum Mol Genet.
2003;
12
(23)
3195-3205
MissingFormLabel
- 154
Kordasiewicz H B, Thompson R M, Clark H B, Gomez C M.
C-termini of P/Q-type Ca2+ channel alpha1A subunits translocate to nuclei and promote
polyglutamine-mediated toxicity.
Hum Mol Genet.
2006;
15
(10)
1587-1599
MissingFormLabel
- 155
Zhuchenko O, Bailey J, Bonnen P et al..
Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions
in the alpha 1A-voltage-dependent calcium channel.
Nat Genet.
1997;
15
(1)
62-69
MissingFormLabel
- 156
Gill G, Tjian R.
Eukaryotic coactivators associated with the TATA box binding protein.
Curr Opin Genet Dev.
1992;
2
(2)
236-242
MissingFormLabel
Peter K. ToddM.D. Ph.D.
Assistant Professor of Neurology, Department of Neurology, University of Michigan
4001 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109
eMail: petertod@umich.edu