RSS-Feed abonnieren
DOI: 10.1055/s-0031-1299784
Genetics of Dementia
Publikationsverlauf
Publikationsdatum:
21. Januar 2012 (online)

ABSTRACT
Genetic factors are now recognized to play an important role in most age-related dementias. Although other factors, including aging itself, contribute to dementia, in this review the authors focus on the role of specific disease-causing genes and genetic factors in the most common age-related dementias. They review each dementia within the context of a genes/environment continuum, with varying levels of genetic versus environmental influence. All major classes of dementia will be discussed but greatest attention will be given to the most common dementia, Alzheimer's disease, for which several new genetic factors were recently identified.
KEYWORDS
Amyloid - frontotemporal dementia - dementia with Lewy bodies - neurodegeneration - genetic risk factors
REFERENCES
- 1
Bertram L, Lill C M, Tanzi R E.
The genetics of Alzheimer disease: back to the future.
Neuron.
2010;
68
(2)
270-281
MissingFormLabel
- 2
Van Broeckhoven C.
The future of genetic research on neurodegeneration.
Nat Med.
2010;
16
(11)
1215-1217
MissingFormLabel
- 3
Crews L, Masliah E.
Molecular mechanisms of neurodegeneration in Alzheimer's disease.
Hum Mol Genet.
2010;
19
(R1)
R12-R20
MissingFormLabel
- 4
Kim J, Basak J M, Holtzman D M.
The role of apolipoprotein E in Alzheimer's disease.
Neuron.
2009;
63
(3)
287-303
MissingFormLabel
- 5
Green R C, Roberts J S, Cupples L A REVEAL Study Group et al.
Disclosure of APOE genotype for risk of Alzheimer's disease.
N Engl J Med.
2009;
361
(3)
245-254
MissingFormLabel
- 6
Ashe K H, Zahs K R.
Probing the biology of Alzheimer's disease in mice.
Neuron.
2010;
66
(5)
631-645
MissingFormLabel
- 7
Kim D, Tsai L H.
Bridging physiology and pathology in AD.
Cell.
2009;
137
(6)
997-1000
MissingFormLabel
- 8
Thinakaran G, Koo E H.
Amyloid precursor protein trafficking, processing, and function.
J Biol Chem.
2008;
283
(44)
29615-29619
MissingFormLabel
- 9
LaFerla F M.
Pathways linking Abeta and tau pathologies.
Biochem Soc Trans.
2010;
38
(4)
993-995
MissingFormLabel
- 10
Ittner L M, Ke Y D, Delerue F et al..
Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse
models.
Cell.
2010;
142
(3)
387-397
MissingFormLabel
- 11
Cruchaga C, Kauwe J S, Mayo K et al..
SNPs associated with cerebrospinal fluid phospho-tau levels influence rate of decline
in Alzheimer's disease.
PLoS Genet.
2010;
6
(9)
pii: e1001101
MissingFormLabel
- 12
Fagan A M, Head D, Shah A R et al..
Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively
normal elderly.
Ann Neurol.
2009;
65
(2)
176-183
MissingFormLabel
- 13
Holtzman D M.
Cerebrospinal fluid beta-amyloid 42, tau, and P-tau: confirmation now realization.
Arch Neurol.
2009;
66
(12)
1552-1553
MissingFormLabel
- 14
Hu W T, Chen-Plotkin A, Arnold S E et al..
Novel CSF biomarkers for Alzheimer's disease and mild cognitive impairment.
Acta Neuropathol.
2010;
119
(6)
669-678
MissingFormLabel
- 15
Jack Jr C R, Knopman D S, Jagust W J et al..
Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade.
Lancet Neurol.
2010;
9
(1)
119-128
MissingFormLabel
- 16
Jagust W J, Landau S M, Shaw L M Alzheimer's Disease Neuroimaging Initiative et al.
Relationships between biomarkers in aging and dementia.
Neurology.
2009;
73
(15)
1193-1199
MissingFormLabel
- 17
Morris J C, Roe C M, Grant E A et al..
Pittsburgh compound B imaging and prediction of progression from cognitive normality
to symptomatic Alzheimer disease.
Arch Neurol.
2009;
66
(12)
1469-1475
MissingFormLabel
- 18
Vemuri P, Wiste H J, Weigand S D Alzheimer's Disease Neuroimaging Initiative et al.
Serial MRI and CSF biomarkers in normal aging, MCI, and AD.
Neurology.
2010;
75
(2)
143-151
MissingFormLabel
- 19
Sperling R A, Aisen P S, Beckett L A et al..
Toward defining the preclinical stages of Alzheimer's disease: recommendations from
the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines
for Alzheimer's disease.
Alzheimers Dement.
2011;
7
(3)
280-292
MissingFormLabel
- 20
Bertram L, McQueen M B, Mullin K, Blacker D, Tanzi R E.
Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene
database.
Nat Genet.
2007;
39
(1)
17-23
MissingFormLabel
- 21
Colhoun H M, McKeigue P M, Davey Smith G.
Problems of reporting genetic associations with complex outcomes.
Lancet.
2003;
361
(9360)
865-872
MissingFormLabel
- 22
Harold D, Abraham R, Hollingworth P et al..
Genome-wide association study identifies variants at CLU and PICALM associated with
Alzheimer's disease.
Nat Genet.
2009;
41
(10)
1088-1093
MissingFormLabel
- 23
Lambert J C, Heath S, Even G European Alzheimer's Disease Initiative Investigators et al.
Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's
disease.
Nat Genet.
2009;
41
(10)
1094-1099
MissingFormLabel
- 24
Seshadri S, Fitzpatrick A L, Ikram M A CHARGE Consortium et al.
Genome-wide analysis of genetic loci associated with Alzheimer disease.
JAMA.
2010;
303
(18)
1832-1840
MissingFormLabel
- 25
Hollingworth P, Harold D, Sims R Alzheimer's Disease Neuroimaging Initiative et al.
Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with
Alzheimer's disease.
Nat Genet.
2011;
43
(5)
429-435
10.1038/ng.803
MissingFormLabel
- 26
Bettens K, Sleegers K, Van Broeckhoven C.
Current status on Alzheimer disease molecular genetics: from past, to present, to
future.
Hum Mol Genet.
2010;
19
(R1)
R4-R11
MissingFormLabel
- 27
Yerbury J J, Poon S, Meehan S et al..
The extracellular chaperone clusterin influences amyloid formation and toxicity by
interacting with prefibrillar structures.
FASEB J.
2007;
21
(10)
2312-2322
MissingFormLabel
- 28
Kirszbaum L, Bozas S E, Walker I D.
SP-40,40, a protein involved in the control of the complement pathway, possesses a
unique array of disulphide bridges.
FEBS Lett.
1992;
297
(1–2)
70-76
MissingFormLabel
- 29
Thambisetty M, Simmons A, Velayudhan L et al..
Association of plasma clusterin concentration with severity, pathology, and progression
in Alzheimer disease.
Arch Gen Psychiatry.
2010;
67
(7)
739-748
MissingFormLabel
- 30
Calero M, Rostagno A, Frangione B, Ghiso J.
Clusterin and Alzheimer's disease.
Subcell Biochem.
2005;
38
273-298
MissingFormLabel
- 31
Braskie M N, Jahanshad N, Stein J L et al..
Common Alzheimer's disease risk variant within the CLU gene affects white matter microstructure
in young adults.
J Neurosci.
2011;
31
(18)
6764-6770
MissingFormLabel
- 32
Krych-Goldberg M, Atkinson J P.
Structure-function relationships of complement receptor type 1.
Immunol Rev.
2001;
180
112-122
MissingFormLabel
- 33
Zanjani H, Finch C E, Kemper C et al..
Complement activation in very early Alzheimer disease.
Alzheimer Dis Assoc Disord.
2005;
19
(2)
55-66
MissingFormLabel
- 34
Eikelenboom P, Veerhuis R, Scheper W, Rozemuller A J, van Gool W A, Hoozemans J J.
The significance of neuroinflammation in understanding Alzheimer's disease.
J Neural Transm.
2006;
113
(11)
1685-1695
MissingFormLabel
- 35
Rogers J, Li R, Mastroeni D et al..
Peripheral clearance of amyloid beta peptide by complement C3-dependent adherence
to erythrocytes.
Neurobiol Aging.
2006;
27
(12)
1733-1739
MissingFormLabel
- 36
Brouwers N, Van Cauwenberghe C, Engelborghs S et al..
Alzheimer risk associated with a copy number variation in the complement receptor
1 increasing C3b/C4b binding sites.
Mol Psychiatry.
2011;
; March 15 [Epub ahead of print]
MissingFormLabel
- 37
Tebar F, Bohlander S K, Sorkin A.
Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated
pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated
traffic.
Mol Biol Cell.
1999;
10
(8)
2687-2702
MissingFormLabel
- 38
Koo E H, Squazzo S L.
Evidence that production and release of amyloid beta-protein involves the endocytic
pathway.
J Biol Chem.
1994;
269
(26)
17386-17389
MissingFormLabel
- 39
Carey R M, Balcz B A, Lopez-Coviella I, Slack B E.
Inhibition of dynamin-dependent endocytosis increases shedding of the amyloid precursor
protein ectodomain and reduces generation of amyloid beta protein.
BMC Cell Biol.
2005;
6
30
MissingFormLabel
- 40
Harel A, Wu F, Mattson M P, Morris C M, Yao P J.
Evidence for CALM in directing VAMP2 trafficking.
Traffic.
2008;
9
(3)
417-429
MissingFormLabel
- 41
Sakamuro D, Elliott K J, Wechsler-Reya R, Prendergast G C.
BIN1 is a novel MYC-interacting protein with features of a tumour suppressor.
Nat Genet.
1996;
14
(1)
69-77
MissingFormLabel
- 42
Wigge P, McMahon H T.
The amphiphysin family of proteins and their role in endocytosis at the synapse.
Trends Neurosci.
1998;
21
(8)
339-344
MissingFormLabel
- 43
Meunier B, Quaranta M, Daviet L, Hatzoglou A, Leprince C.
The membrane-tubulating potential of amphiphysin 2/BIN1 is dependent on the microtubule-binding
cytoplasmic linker protein 170 (CLIP-170).
Eur J Cell Biol.
2009;
88
(2)
91-102
MissingFormLabel
- 44
Tanaka N, Abe-Dohmae S, Iwamoto N, Yokoyama S.
Roles of ATP-binding cassette transporter A7 in cholesterol homeostasis and host defense
system.
J Atheroscler Thromb.
2011;
18
(4)
274-281
MissingFormLabel
- 45
Ikeda Y, Abe-Dohmae S, Munehira Y et al..
Posttranscriptional regulation of human ABCA7 and its function for the apoA-I-dependent
lipid release.
Biochem Biophys Res Commun.
2003;
311
(2)
313-318
MissingFormLabel
- 46
Langmann T, Mauerer R, Zahn A et al..
Real-time reverse transcription-PCR expression profiling of the complete human ATP-binding
cassette transporter superfamily in various tissues.
Clin Chem.
2003;
49
(2)
230-238
MissingFormLabel
- 47
Jehle A W, Gardai S J, Li S et al..
ATP-binding cassette transporter A7 enhances phagocytosis of apoptotic cells and associated
ERK signaling in macrophages.
J Cell Biol.
2006;
174
(4)
547-556
MissingFormLabel
- 48
Liang Y, Buckley T R, Tu L, Langdon S D, Tedder T F.
Structural organization of the human MS4A gene cluster on chromosome 11q12.
Immunogenetics.
2001;
53
(5)
357-368
MissingFormLabel
- 49
Tateno H, Li H, Schur M J et al..
Distinct endocytic mechanisms of CD22 (Siglec-2) and Siglec-F reflect roles in cell
signaling and innate immunity.
Mol Cell Biol.
2007;
27
(16)
5699-5710
MissingFormLabel
- 50
Crocker P R, Paulson J C, Varki A.
Siglecs and their roles in the immune system.
Nat Rev Immunol.
2007;
7
(4)
255-266
MissingFormLabel
- 51
Dustin M L, Olszowy M W, Holdorf A D et al..
A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity
in T-cell contacts.
Cell.
1998;
94
(5)
667-677
MissingFormLabel
- 52
Lynch D K, Winata S C, Lyons R J et al..
A cortactin-CD2-associated protein (CD2AP) complex provides a novel link between epidermal
growth factor receptor endocytosis and the actin cytoskeleton.
J Biol Chem.
2003;
278
(24)
21805-21813
MissingFormLabel
- 53
Pimplikar S W, Nixon R A, Robakis N K, Shen J, Tsai L H.
Amyloid-independent mechanisms in Alzheimer's disease pathogenesis.
J Neurosci.
2010;
30
(45)
14946-14954
MissingFormLabel
- 54
McGeer E G, McGeer P L.
Innate immunity in Alzheimer's disease: a model for local inflammatory reactions.
Mol Interv.
2001;
1
(1)
22-29
MissingFormLabel
- 55
Bates K A, Verdile G, Li Q X et al..
Clearance mechanisms of Alzheimer's amyloid-beta peptide: implications for therapeutic
design and diagnostic tests.
Mol Psychiatry.
2009;
14
(5)
469-486
MissingFormLabel
- 56
Blasko I, Stampfer-Kountchev M, Robatscher P, Veerhuis R, Eikelenboom P, Grubeck-Loebenstein B.
How chronic inflammation can affect the brain and support the development of Alzheimer's
disease in old age: the role of microglia and astrocytes.
Aging Cell.
2004;
3
(4)
169-176
MissingFormLabel
- 57
Rowe J A, Moulds J M, Newbold C I, Miller LHP.
P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor
1.
Nature.
1997;
388
(6639)
292-295
MissingFormLabel
- 58
Dietschy J M, Turley S D.
Cholesterol metabolism in the brain.
Curr Opin Lipidol.
2001;
12
(2)
105-112
MissingFormLabel
- 59
Puglielli L, Tanzi R E, Kovacs D M.
Alzheimer's disease: the cholesterol connection.
Nat Neurosci.
2003;
6
(4)
345-351
MissingFormLabel
- 60
Miwa Y, Takiuchi S, Kamide K et al..
Insertion/deletion polymorphism in clusterin gene influences serum lipid levels and
carotid intima-media thickness in hypertensive Japanese females.
Biochem Biophys Res Commun.
2005;
331
(4)
1587-1593
MissingFormLabel
- 61
Ishikawa Y, Akasaka Y, Ishii T et al..
Distribution and synthesis of apolipoprotein J in the atherosclerotic aorta.
Arterioscler Thromb Vasc Biol.
1998;
18
(4)
665-672
MissingFormLabel
- 62
Tanaka N, Abe-Dohmae S, Iwamoto N, Yokoyama S.
Roles of ATP-binding cassette transporter A7 in cholesterol homeostasis and host defense
system.
J Atheroscler Thromb.
2011;
18
(4)
274-281
MissingFormLabel
- 63
Mack J T, Townsend D M, Beljanski V, Tew K D.
The ABCA2 transporter: intracellular roles in trafficking and metabolism of LDL-derived
cholesterol and sterol-related compounds.
Curr Drug Metab.
2007;
8
(1)
47-57
MissingFormLabel
- 64
Brody D L, Magnoni S, Schwetye K E et al..
Amyloid-beta dynamics correlate with neurological status in the injured human brain.
Science.
2008;
321
(5893)
1221-1224
MissingFormLabel
- 65
Shankar G M, Li S, Mehta T H et al..
Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic
plasticity and memory.
Nat Med.
2008;
14
(8)
837-842
MissingFormLabel
- 66
Selkoe D J.
Alzheimer's disease.
Cold Spring Harb Perspect Biol.
2011;
3
(7)
pii: a004457
MissingFormLabel
- 67
Bartl M M, Luckenbach T, Bergner O, Ullrich O, Koch-Brandt C.
Multiple receptors mediate apoJ-dependent clearance of cellular debris into nonprofessional
phagocytes.
Exp Cell Res.
2001;
271
(1)
130-141
MissingFormLabel
- 68
Bell R D, Sagare A P, Friedman A E et al..
Transport pathways for clearance of human Alzheimer's amyloid beta-peptide and apolipoproteins
E and J in the mouse central nervous system.
J Cereb Blood Flow Metab.
2007;
27
(5)
909-918
MissingFormLabel
- 69
Stevens B, Allen N J, Vazquez L E et al..
The classical complement cascade mediates CNS synapse elimination.
Cell.
2007;
131
(6)
1164-1178
MissingFormLabel
- 70
Rademakers R, Rovelet-Lecrux A.
Recent insights into the molecular genetics of dementia.
Trends Neurosci.
2009;
32
(8)
451-461
MissingFormLabel
- 71
Rohrer J D, Guerreiro R, Vandrovcova J et al..
The heritability and genetics of frontotemporal lobar degeneration.
Neurology.
2009;
73
(18)
1451-1456
MissingFormLabel
- 72
van der Zee J, Sleegers K, Van Broeckhoven C.
Invited article: the Alzheimer disease-frontotemporal lobar degeneration spectrum.
Neurology.
2008;
71
(15)
1191-1197
MissingFormLabel
- 73
Renton A E, Majounie E, Waite A et al..
A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked
ALS-FTD.
Neuron.
2011;
72
(2)
257-268
MissingFormLabel
- 74
DeJesus-Hernandez M, Mackenzie I R, Boeve B F et al..
Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome
9p-linked FTD and ALS.
Neuron.
2011;
72
(2)
245-256
MissingFormLabel
- 75
Ballatore C, Lee V M, Trojanowski J Q.
Tau-mediated neurodegeneration in Alzheimer's disease and related disorders.
Nat Rev Neurosci.
2007;
8
(9)
663-672
MissingFormLabel
- 76
Chen-Plotkin A S, Lee V M, Trojanowski J Q.
TAR DNA-binding protein 43 in neurodegenerative disease.
Nat Rev Neurol.
2010;
6
(4)
211-220
MissingFormLabel
- 77
Mackenzie I R, Rademakers R, Neumann M.
TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia.
Lancet Neurol.
2010;
9
(10)
995-1007
MissingFormLabel
- 78
Urwin H, Josephs K A, Rohrer J D FReJA Consortium et al.
FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar
degeneration.
Acta Neuropathol.
2010;
120
(1)
33-41
MissingFormLabel
- 79
Coppola G, Karydas A, Rademakers R et al..
Gene expression study on peripheral blood identifies progranulin mutations.
Ann Neurol.
2008;
64
(1)
92-96
MissingFormLabel
- 80
Ghidoni R, Benussi L, Glionna M, Franzoni M, Binetti G.
Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar
degeneration.
Neurology.
2008;
71
(16)
1235-1239
MissingFormLabel
- 81
Sleegers K, Brouwers N, Van Damme P et al..
Serum biomarker for progranulin-associated frontotemporal lobar degeneration.
Ann Neurol.
2009;
65
(5)
603-609
MissingFormLabel
- 82
Geser F, Martinez-Lage M, Robinson J et al..
Clinical and pathological continuum of multisystem TDP-43 proteinopathies.
Arch Neurol.
2009;
66
(2)
180-189
MissingFormLabel
- 83
Barmada S J, Skibinski G, Korb E, Rao E J, Wu J Y, Finkbeiner S.
Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation
associated with familial amyotrophic lateral sclerosis.
J Neurosci.
2010;
30
(2)
639-649
MissingFormLabel
- 84
Weihl C C.
Valosin containing protein associated fronto-temporal lobar degeneration: clinical
presentation, pathologic features and pathogenesis.
Curr Alzheimer Res.
2011;
8
(3)
252-260
MissingFormLabel
- 85
Urwin H, Ghazi-Noori S, Collinge J, Isaacs A.
The role of CHMP2B in frontotemporal dementia.
Biochem Soc Trans.
2009;
37
(Pt 1)
208-212
MissingFormLabel
- 86
Lee J A, Liu L, Gao F B.
Autophagy defects contribute to neurodegeneration induced by dysfunctional ESCRT-III.
Autophagy.
2009;
5
(7)
1070-1072
MissingFormLabel
- 87
Deng H X, Chen W, Hong S T et al..
Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia.
Nature.
2011;
477
(7363)
211-215
MissingFormLabel
- 88
Van Deerlin V M, Sleiman P M, Martinez-Lage M et al..
Common variants at 7p21 are associated with frontotemporal lobar degeneration with
TDP-43 inclusions.
Nat Genet.
2010;
42
(3)
234-239
MissingFormLabel
- 89
Finch N, Carrasquillo M M, Baker M et al..
TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers.
Neurology.
2011;
76
(5)
467-474
MissingFormLabel
- 90
Bonifati V.
Recent advances in the genetics of dementia with Lewy bodies.
Curr Neurol Neurosci Rep.
2008;
8
(3)
187-189
MissingFormLabel
- 91
Clark L N, Kartsaklis L A, Wolf Gilbert R et al..
Association of glucocerebrosidase mutations with dementia with Lewy bodies.
Arch Neurol.
2009;
66
(5)
578-583
MissingFormLabel
- 92
Brown K, Mastrianni J A.
The prion diseases.
J Geriatr Psychiatry Neurol.
2010;
23
(4)
277-298
MissingFormLabel
- 93
Mead S, Poulter M, Uphill J et al..
Genetic risk factors for variant Creutzfeldt-Jakob disease: a genome-wide association
study.
Lancet Neurol.
2009;
8
(1)
57-66
MissingFormLabel
- 94
Angot E, Steiner J A, Hansen C, Li J Y, Brundin P.
Are synucleinopathies prion-like disorders?.
Lancet Neurol.
2010;
9
(11)
1128-1138
MissingFormLabel
- 95
Kim J, Holtzman D M.
Medicine. Prion-like behavior of amyloid-beta.
Science.
2010;
330
(6006)
918-919
MissingFormLabel
- 96
Frost B, Diamond M I.
Prion-like mechanisms in neurodegenerative diseases.
Nat Rev Neurosci.
2010;
11
(3)
155-159
MissingFormLabel
- 97
Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser M G.
CADASIL.
Lancet Neurol.
2009;
8
(7)
643-653
MissingFormLabel
- 98
Ross C A, Tabrizi S J.
Huntington's disease: from molecular pathogenesis to clinical treatment.
Lancet Neurol.
2011;
10
(1)
83-98
MissingFormLabel
- 99
Wild E J, Mudanohwo E E, Sweeney M G et al..
Huntington's disease phenocopies are clinically and genetically heterogeneous.
Mov Disord.
2008;
23
(5)
716-720
MissingFormLabel
- 100
Stevanin G, Brice A.
Spinocerebellar ataxia 17 (SCA17) and Huntington's disease-like 4 (HDL4).
Cerebellum.
2008;
7
(2)
170-178
MissingFormLabel
- 101
Garcia-Arocena D, Hagerman P J.
Advances in understanding the molecular basis of FXTAS.
Hum Mol Genet.
2010;
19
(R1)
R83-R89
MissingFormLabel
- 102
Leehey M A.
Fragile X-associated tremor/ataxia syndrome: clinical phenotype, diagnosis, and treatment.
J Investig Med.
2009;
57
(8)
830-836
MissingFormLabel
Henry L. PaulsonM.D. Ph.D.
Professor of Neurology, Department of Neurology, University of Michigan
4001 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109
eMail: henryp@umich.edu