physioscience 2012; 8(3): 96-103
DOI: 10.1055/s-0031-1299542
Forschungsbericht
© Georg Thieme Verlag KG Stuttgart · New York

Einsatz von mentalem Training in der Neurorehabilitation

Use of Mental Training in Neurorehabilitation
C. Dettmers
,
V. Nedelko
Further Information

Publication History

12 March 2012

16 March 2012

Publication Date:
17 August 2012 (online)

Zusammenfassung

Hintergrund: Mittels Bewegungsvorstellung und -beobachtung werden große Teile des motorischen Systems stimuliert und aktiviert, insbesondere der motorische Assoziations- bzw. der prämotorische und parietale Kortex, die in der Bewegungsplanung der Ausführung anatomisch und funktionell hierarchisch vorgeschaltet erscheinen.

Ziel/Methode: Um herauszufinden, wie gut das Vorstellungsvermögen der Patienten ausgeprägt ist, wurden mithilfe von 4 Testkategorien (Tests, die die Lebhaftigkeit der Bewegungsvorstellung erfassen, chronometrische Tests, Tests, die implizit das räumliche Vorstellungsvermögen voraussetzen, und autonome Tests) genaue, individuelle Assessments durchgeführt.

Ergebnisse: Mentales Training kann vermutlich keine konventionelle Physio- oder Ergotherapie ersetzen. Sie ist eher eine komplementäre Methode, um die Trainingszeiten zu vermehren und gezielt den oberhalb der Exekutive befindlichen und dieser vorgeschalteten Teil zu beüben.

Schlussfolgerung: Es bleibt zu klären, welche Patienten von welcher Form des mentalen Trainings mehr profitieren.

Abstract

Background: Large parts of the motor system are stimulated and activated by using motor imagery and motor observation, in particular the motor association cortex, respectively the premotor and parietal cortex which in motor planning appear to anatomically and functionally precede motor performance.

Objective/Method: In order to find out to which degree the patients’ imagination is developed, accurate individual assessments were employed by means of 4 test categories (tests measuring motor imagery vividness, chronometric tests, tests that implicitly require spatial sense and autonomic tests).

Results: Presumably, mental practice cannot replace conventional physiotherapy or occupational therapy. It is rather a complementary method in order to increase exercise schedules and to specifically practice the part beyond and premotor to the executive.

Conclusion: It is still to be clarified which patients benefit to a larger extent from which form of mental practice.

 
  • Literatur

  • 1 Allami N et al. Visuo-motor learning with combination of different rates of motor imagery and physical practice. Exp Brain Res 2008; 184: 105-113
  • 2 Aziz-Zadeh L et al. Lateralization of the human mirror neuron system. J Neurosci 2006; 26: 2964-2970
  • 3 Binkofski F et al. Broca’s region subserves imagery of motion: a combined cytoarchitectonic and fMRI study. Hum Brain Mapp 2000; 11: 273-285
  • 4 Binkofski F, Buccino G. The role of ventral premotor cortex in action execution and action understanding. J Physiol Paris 2006; 99: 396-405
  • 5 Braun S et al. Using mental practice in stroke rehabilitation: a framework. Clin Rehabil 2008; 22: 579-591
  • 6 Buccino G et al. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci 2001; 13: 400-404
  • 7 Buccino G, Binkofski F, Riggio L. The mirror neuron system and action recognition. Brain Lang 2004; 89: 370-376
  • 8 Buccino G, Solodkin A, Small SL. Functions of the mirror neuron system: implications for neurorehabilitation. Cogn Behav. Neurol 2006; 19: 55-63
  • 9 Buccino G et al. Neural circuits underlying imitation learning of hand actions: an event-related fMRI study. Neuron 2004; 42: 323-334
  • 10 Butler AJ, Page SJ. Mental practice with motor imagery: evidence for motor recovery and cortical reorganization after stroke. Arch Phys Med Rehabil 2006; 87: 2-11
  • 11 Cabeza R. Cognitive neuroscience of aging: contributions of functional neuroimaging. Scand J Psychol 2001; 42: 277-286
  • 12 Callow N, Hardy L. The relationship between the use of kinaesthetic imagery and different visual imagery perspectives. J Sports Sci 2004; 22: 167-177
  • 13 Calvo-Merino B et al. Experts see it all: configural effects in action observation. Psychol Res 2009; 74: 400-406
  • 14 Calvo-Merino B et al. Action observation and acquired motor skills: an FMRI study with expert dancers. Cereb Cortex 2005; 15: 1243-1249
  • 15 Celnik P et al. Encoding a motor memory in the older adult by action observation. Neuroimage 2006; 29: 677-684
  • 16 Celnik P et al. Effects of action observation on physical training after stroke. Stroke 2008; 39: 1814-1820
  • 17 Conson M et al. Action observation improves motor imagery: specific interactions between simulative processes. Exp Brain Res 2009; 199: 71-81
  • 18 Crosbie JH et al. The adjunctive role of mental practice in the rehabilitation of the upper limb after hemiplegic stroke: a pilot study. Clin Rehabil 2004; 18: 60-68
  • 19 de Vries S, Mulder T. Motor imagery and stroke rehabilitation: a critical discussion. J Rehabil Med 2007; 39: 5-13
  • 20 Decety J et al. Vegetative response during imagined movement is proportional to mental effort. Behav Brain Res 1991; 42: 1-5
  • 21 Decety J, Jeannerod M, Prablanc C. The timing of mentally represented actions. Behav Brain Res 1989; 34: 35-42
  • 22 Dijkerman HC et al. Does motor imagery training improve hand function in chronic stroke patients? A pilot study. Clin Rehabil 2004; 18: 538-549
  • 23 Ertelt D et al. Action observation has a positive impact on rehabilitation of motor deficits after stroke. Neuroimage 2007; 36 (Suppl. 02) 164-173
  • 24 Fadiga L, Craighero L, Olivier E. Human motor cortex excitability during the perception of others' action. Curr Opin Neurobiol 2005; 15: 213-218
  • 25 Farah MJ, Levine DN, Calvanio R. A case study of mental imagery deficit. Brain Cogn 1988; 8: 147-164
  • 26 Filimon F et al. Human cortical representations for reaching: mirror neurons for execution, observation, and imagery. Neuroimage 2007; 37: 1315-1328
  • 27 Fleming MK, Stinear CM, Byblow WD. Bilateral parietal cortex function during motor imagery. Exp Brain Res 2010; 201: 499-508
  • 28 Fujii N, Hihara S, Iriki A. Social cognition in premotor and parietal cortex. Soc Neurosci 2008; 3: 250-260
  • 29 Gaggioli A et al. Training with computer-supported motor imagery in post-stroke rehabilitation. Cyberpsychol Behav 2004; 7: 327-332
  • 30 Gonzalez B et al. Disturbance of motor imagery after cerebellar stroke. Behav Neurosci 2005; 119: 622-626
  • 31 Grezes J, Decety J. Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum Brain Mapp 2001; 12: 1-19
  • 32 Guillot A et al. Brain activity during visual versus kinesthetic imagery: an fMRI study. Hum Brain Mapp 2009; 30: 2157-2172
  • 33 Holmes P, Calmels C. A neuroscientific review of imagery and observation use in sport. J Mot Behav 2008; 40: 433-445
  • 34 Iacoboni M. Neural mechanisms of imitation. Curr Opin Neurobiol 2005; 15: 632-637
  • 35 Iacoboni M, Dapretto M. The mirror neuron system and the consequences of its dysfunction. Nat Rev Neurosci 2006; 7: 942-951
  • 36 Iacoboni M, Mazziotta JC. Mirror neuron system: basic findings and clinical applications. Ann Neurol 2007; 62: 213-218
  • 37 Ietswaart M et al. Recovery of hand function through mental practice: a study protocol. BMC Neurol 2006; 6: 39
  • 38 Isaac AR, Marks DF. Individual differences in mental imagery experience: developmental changes and specialization. Br J Psychol 1994; 85: 479-500
  • 39 Jackson PL et al. The efficacy of combined physical and mental practice in the learning of a foot-sequence task after stroke: a case report. Neurorehabil Neural Repair 2004; 18: 106-111
  • 40 Jackson PL, Meltzoff AN, Decety J. Neural circuits involved in imitation and perspective-taking. Neuroimage 2006; 31: 429-439
  • 41 Jeannerod M. Mental imagery in the motor context. Neuropsychologia 1995; 33: 1419-1432
  • 42 Jeannerod M, Decety J. Mental motor imagery: a window into the representational stages of action. Curr Opin Neurobiol 1995; 5: 727-732
  • 43 Johnson SH et al. Selective activation of a parietofrontal circuit during implicitly imagined prehension. Neuroimage 2002; 17: 1693-16704
  • 44 Johnson SH, Sprehn G, Saykin AJ. Intact motor imagery in chronic upper limb hemiplegics: evidence for activity-independent action representations. J Cogn Neurosci 2002; 14: 841-852
  • 45 Johnson-Frey SH. Stimulation through simulation? Motor imagery and functional reorganization in hemiplegic stroke patients. Brain Cogn 2004; 55: 328-331
  • 46 Kosslyn SM, Ganis G, Thompson WL. Neural foundations of imagery. Nat Rev Neurosci 2001; 2: 635-642
  • 47 Kosslyn SM, Thompson WL. When is early visual cortex activated during visual mental imagery?. Psychol Bull 2003; 129: 723-746
  • 48 Liu KP. Use of mental imagery to improve task generalisation after a stroke. Hong Kong Med J 2009; 15: 37-41
  • 49 Liu KP et al. Mental imagery for promoting relearning for people after stroke: a randomized controlled trial. Arch Phys Med Rehabil 2004; 85: 1403-1408
  • 50 Liu KP et al. A randomized controlled trial of mental imagery augment generalization of learning in acute poststroke patients. Stroke 2009; 40: 2222-2225
  • 51 Lotze M, Halsband U. Motor imagery. J Physiol Paris 2006; 99: 386-395
  • 52 Maeda F, Kleiner-Fisman G, Pascual-Leone A. Motor facilitation while observing hand actions: specificity of the effect and role of observer’s orientation. J Neurophysiol 2002; 87: 1329-1335
  • 53 Malouin F et al. Effects of practice, visual loss, limb amputation, and disuse on motor imagery vividness. Neurorehabil Neural Repair 2009; 23: 449-463
  • 54 Malouin F et al. Clinical assessment of motor imagery after stroke. Neurorehabil Neural Repair 2008; 22: 330-340
  • 55 Malouin F et al. Reliability of mental chronometry for assessing motor imagery ability after stroke. Arch Phys Med Rehabil 2008; 89: 311-319
  • 56 Malouin F et al. The Kinesthetic and Visual Imagery Questionnaire (KVIQ) for assessing motor imagery in persons with physical disabilities: a reliability and construct validity study. J Neurol Phys Ther 2007; 31: 20-29
  • 57 Mechelli A et al. Where bottom-up meets top-down: neuronal interactions during perception and imagery. Cereb Cortex 2004; 14: 1256-1265
  • 58 Milton J, Small SL, Solodkin A. Imaging motor imagery: methodological issues related to expertise. Methods 2008; 45: 336-341
  • 59 Mulder T. Motor imagery and action observation: cognitive tools for rehabilitation. J Neural Transm 2007; 114: 1265-1278
  • 60 Mulder T et al. Motor imagery: the relation between age and imagery capacity. Hum Mov Sci 2007; 26: 203-211
  • 61 Mulder T et al. The role of motor imagery in learning a totally novel movement. Exp Brain Res 2004; 154: 211-217
  • 62 Muller K et al. Mental practice improves hand function after hemiparetic stroke. Restor Neurol Neurosc 2007; 25: 501-511
  • 63 Munzert J, Zentgraf K. Motor imagery and its implications for understanding the motor system. Prog Brain Res 2009; 174: 219-329
  • 64 Munzert J et al. Neural activation in cognitive motor processes: comparing motor imagery and observation of gymnastic movements. Exp Brain Res 2008; 188: 437-444
  • 65 Nedelko V, Hassa T, Hamzei F et al. Age-independent activation in areas of the mirror neuron system during action observation and action imagery. A fMRI study. Restor Neurol Neurosci 2011; 28: 737-747
  • 66 Page SJ, Levine P, Leonard A. Mental practice in chronic stroke: results of a randomized, placebo-controlled trial. Stroke 2007; 38: 1293-1297
  • 67 Page SJ et al. A randomized efficacy and feasibility study of imagery in acute stroke. Clin Rehabil 2001; 15: 233-240
  • 68 Parsons LM et al. Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature 1995; 375: 54-58
  • 69 Pelgrims B, Andres M, Olivier E. Double dissociation between motor and visual imagery in the posterior parietal cortex. Cereb Cortex 2009; 19: 2298-2307
  • 70 Piefke M et al. Neurofunctional modulation of brain regions by distinct forms of motor cognition and movement features. Hum Brain Mapp 2009; 30: 432-451
  • 71 Richter W et al. Motor area activity during mental rotation studied by time-resolved single-trial fMRI. J Cogn Neurosci 2000; 12: 310-320
  • 72 Rizzolatti G et al. Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res 1996; 3: 131-141
  • 73 Roland PE et al. Supplementary motor area and other cortical areas in organization of voluntary movements in man. J Neurophysiol 1980; 43: 118-136
  • 74 Sack AT, Lindner M, Linden DE. Object- and direction-specific interference between manual and mental rotation. Percept Psychophys 2007; 69: 1435-1449
  • 75 Schuster C et al. Comparison of embedded and added motor imagery training in patients after stroke: study protocol of a randomised controlled pilot trial using a mixed methods approach. Trials 2009; 10: 97
  • 76 Sharma N, Pomeroy VM, Baron JC. Motor imagery: a backdoor to the motor system after stroke?. Stroke 2006; 37: 1941-1952
  • 77 Sharma N et al. Motor imagery after subcortical stroke: a functional magnetic resonance imaging study. Stroke 2009; 40: 1315-1324
  • 78 Shepard RN, Metzler J. Mental rotation of three-dimensional objects. Science 1971; 171: 701-703
  • 79 Simmons L et al. Motor imagery to enhance recovery after subcortical stroke: who might benefit, daily dose, and potential effects. Neurorehabil Neural Repair 2008; 22: 458-467
  • 80 Sirigu A et al. The mental representation of hand movements after parietal cortex damage. Science 1996; 273: 1564-1568
  • 81 Solodkin A et al. Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex 2004; 14: 1246-1255
  • 82 Stefan K et al. Concurrent action observation modulates practice-induced motor memory formation. Eur J Neurosci 2008; 27: 730-738
  • 83 Stefan K et al. Formation of a motor memory by action observation. J Neurosci 2005; 25: 9339-9346
  • 84 Stephan KM et al. Functional anatomy of the mental representation of upper extremity movements in healthy subjects. J Neurophysiol 1995; 73: 373-386
  • 85 Stevens JA et al. New aspects of motion perception: selective neural encoding of apparent human movements. Neuroreport 2000; 11: 109-115
  • 86 Stevens JA, Stoykov ME. Using motor imagery in the rehabilitation of hemiparesis. Arch Phys Med Rehabil 2003; 84: 1090-1092
  • 87 Stinear CM et al. Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Exp Brain Res 2006; 168: 157-164
  • 88 Stokes M et al. Top-down activation of shape-specific population codes in visual cortex during mental imagery. J Neurosci 2009; 29: 1565-1572
  • 89 Szameitat AJ, Shen S, Sterr A. Effector-dependent activity in the left dorsal premotor cortex in motor imagery. Eur J Neurosci 2007; 26: 3303-3308
  • 90 Verbunt JA et al. Mental practice-based rehabilitation training to improve arm function and daily activity performance in stroke patients: a randomized clinical trial. BMC Neurol 2008; 8: 7
  • 91 Ward NS, Frackowiak RS. Age-related changes in the neural correlates of motor performance. Brain 2003; 126: 873-888
  • 92 Warner L, McNeill ME. Mental imagery and its potential for physical therapy. Phys Ther 1988; 68: 516-521
  • 93 Yue G, Cole KJ. Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle contractions. J Neurophysiol 1992; 67: 1114-1123
  • 94 Zentgraf K et al. Differential activation of pre-SMA and SMA proper during action observation: effects of instructions. Neuroimage 2005; 26: 662-672
  • 95 Zimmermann-Schlatter A et al. Efficacy of motor imagery in post-stroke rehabilitation: a systematic review. J Neuroeng Rehabil 2008; 5: 8