Subscribe to RSS
DOI: 10.1055/s-0031-1296402
Allometric Scaling of a Metabolically Complex Camptothecin Analog
Differences in scaling of irinotecan and its active metabolite, SN-38Publication History
Publication Date:
13 December 2011 (online)

Abstract
Allometry has been extensively used in the modern day drug development scenario to predict the human relevant parameters (clearance, CI, and volume of distribution at steady state, Vss) from animal data. The applicability of allometry in the prediction of human parameters for irinotecan (CAS 97682-44-5), an important topoisomerase I inhibitor, has been retrospectively investigated. Literature pharmacokinetic data has been gathered for both irinotecan and its main metabolite, SN-38 (CAS 86639-52-3), from several animal species. The corresponding human parameters were predicted using allometry (Cl and Vss for irinotecan; Cl/F for SN-38). Although irinotecan has a complex metabolism and disposition profile, it appeared that simple allometry predicted satisfactorily the human values for Cl (1.7648W0’669) and Vss (3.1277W0’9044) for irinotecan. On the contrary, Cl/F for SN-38 was over predicted by simple allometry (53.389W1’2773); and the applicability of bile correction factor rendered Cl/F of SN-38 to be closer to the observed human value (8.9641W1 3108). The investigation suggests that prospective allometric approaches may aid in the development of future compounds in this important pharmacological and chemical class of cytotoxics.
-
References
- 1 Liew ST, Yang LX. Design, synthesis and development of novel camptothecin drugs. Curr Pharm Des. 2008; 14: 1078-1097
- 2 Rothenberg ML. Irinotecan (CPT-11): Recent developments and future directions-colorectal cancer and beyond. Oncol. 2001; 6: 65
- 3 Mathijssen RHJ, Verweij J, Loos WJ, de Bruijn P, Nooter K, Sparreboom A. Irinotecan pharmacokinetics-pharmacodynamics: the clinical relevance of prolonged exposure to SN-38. Br J Cancer. 2002; 144-150
- 4 Muggia FM, Creaven PJ, Hansen HH, Cohen MH, Selawry OS. Phase I clinical trial of weekly and daily treatment with camptothecin (NSC-100880): correlation with preclinical studies. Cancer Chemother. Report. 1972; 56: 515-521
- 5 Moertel CG, Schutt AJ, Reitemeier RJ, Hahn RG. Phase II study of camptothecin (NSC-100880) in the treatment of advanced gastrointestinal cancer. Cancer Chemother Report. 1972; 56: 95-101
- 6 Schaeppi U, Fleischman RW, Cooney DA. Toxicity of camptothecin (NSC-100880). Cancer Chemother Report. 1974; 5: 25-36
- 7 Creemers GJ, Lund B, Verweij J. Topoisomerase I inhibitors. Topotecan and irinotecan. Cancer Treat Rev. 1994; 20: 73-96
- 8 Slatter JG, Schaaf LJ, Sams JP, Feenstra KL, Johnson MG, Bombardt PA et al Pharmacokinetics, metabolism and excretion of irinotecan(CPT-11) following I.V. infusion of [(14)C] CPT-11 in cancer patients. Drug Metab Dispos. 2000; 28: 423-433
- 9 Farabos C, Haaz MC, Gires P, Robert J. Hepatic extraction, metabolism and biliary excretion of irinotecan in the isolated perfused rat liver. J Pharm Sci. 2001; 90: 722-731
- 10 Sparreboom A, de Jonge MJ, de Bruijn P, Brouwer E, Nooter K, Loos WJ et al Irinotecan (CPT-11) metabolism and disposition in cancer patients. Clin Cancer Res. 1998; 4: 2247-2254
- 11 Itoh T, Takemoto I, Itagaki S, Sasaki K, Hirano T, Iseki K. Biliary excretion of irinotecan and its metabolites. J Pharm Sci. 2004; 7: 13-18
- 12 Sai K, Kaniwa N, Ozawa S, Sawada JI. A new metabolite of irinotecan in which formation is mediated by human hepatic Cytochrome P-450 3A4. Drug Metab Dispos. 2001; 29: 1505-1513
- 13 Iyer L, Ramirez J, Shepard DR, Bingam CM, Hossfeld DK, Ratain MJ et al Biliary transport of irinotecan and metabolites in normal and P-glycoprotein-deficient mice. Cancer Chemother Pharmacol. 2002; 49: 336-341
- 14 Chu XY, Kato Y, Niinuma K, Sudo KI, Hakusi H, Sugiya-ma Y. Multispecific organic anion transporter is responsible for the biliary excretion of the camptothecin derivative irinotecan and its metabolites in rats. J Pharmacol Exp Ther. 1997; 281: 304-314
- 15 Atsumi R, Suzuki W, Hakusui H. Identification of the metabolites of irinotecan, a new derivative of camptothecin, in rat bile and its biliary excretion. Xenobiotica. 1991; 21: 1159-1169
- 16 Araki E, Ishikawa M, Iigo M, Koide T, Itabashi M, Hoshi A. Relationship between development of diarrhea and the concentration of SN-38, an active metabolite of CPT-11, in the intestine and the blood plasma of athymic mice following intraperitoneal administration of CPT-11. Jpn J Cancer Res. 1993; 84: 697-702
- 17 Carbonero RG, Supko JG. Current perspectives on the clinical experience, pharmacology, and continued development of the camptothecins. Clin Cancer Res. 2002; 8: 641-661
- 18 Tallman MN, Ritter JK, Smith PC. Differential rates of glu-curonidation for 7-ethly-10-hydroxy-camptothecin (SN-38) lactone and Carboxylate in human and rat microsomes and recombinant UDP-glucuronosyltransferase isoforms. Drug Metab Dispos. 2005; 33: 977-983
- 19 Girard H, Villeneuve L, Court MH, Fortier LC, Caron P, Hao Q et al The novel UGT1A9 intronic 1399 polymorphism appears as a predictor of 7-ethyl-10-hydroxycamp-tothecin glucuronidation in the liver. Drug Metab Dispos. 2006; 34: 1220-1228
- 20 Luo FR, Paranjpe PV, Guo A, Rubin E, Sinko P. Intestinal transport of irinotecan in Caco-2 cells and MDCK II cells overexpressing efflux transporters PgP, cMOAT, and MRP1. Drug Metab Dispos. 2002; 30: 763-70
- 21 Ando Y, Saka H, Asai G, Sugiura S, Shimokata K, Kamataki T. UGT1A1 genotypes and glucuronidation of SN-38, the active metabolite of irinotecan. Ann Oncol. 1998; b 845-847
- 22 Chu XY, Kato Y, Niinuma K, Sudo KI, Hakusui H, Sugiyama Y. Multispecific organic anion transporter is responsible for the biliary excretion of the camptothecin derivative irinotecan and its metabolites in rats. J. Pharmacol Exp Ther. 1997; 281: 304-14
- 23 Stewart CF, Zamboni WC, Crom WR, Hougton PJ. Disposition of Irinotecan and SN-38 following oral and intravenous irinotecan dosing in mice. Cancer Chemother Pharmacol. 1997; 40: 259-265
- 24 Kirman CR, Sweeney LM, Meek ME, Gargas ML. Assessing the dose dependency of allometric scaling performance using physiologically based pharmacokinetic modeling. Reg Tox Pharmacol. 2003; 345-367
- 25 Teh-Min Hu, William LH. Allometric Scaling of Xenobiotic Clearance: Uncertainty versus Universality. AAPS Pharm Sci. 2001; 3 (29)
- 26 Mahmood I, Yuan R. A Comparative Study of Allometric Scaling with Plasma Concentrations Predicted by Species-invariant Time Methods. Biopharm Drug Dispos. 1999; 20: 137-144
- 27 Sinha VK, De Buck SS, Fenu LA, Smit JW, Nijsen M, Gilis-sen RA et al Predicting oral clearance in humans: how close can we get with allometry. Clin Parmacokinet. 2008; 47: 35-45
- 28 Zamboni WC, Stewart CF, Thompson J, Santsna VM, Cheshire PJ, Richmond LB et al Relationship Between Topo-tecan Systemic Exposure and Tumor Response in Human Neuroblastoma Xenografts. NCI. 1998; 90 (7)
- 29 Mahmood I, Martinez M, Hunter RP. Interspecies allometric scaling. Part I: prediction of clearance in large animals. J Vet Pharmacol Ther. 2006; 29: 415-423
- 30 Robert J, Rivory L. Pharmacology of Irinotecan. Drugs Today. 1998; 34: 777
- 31 Bhamidipati RK, Dravid PV, Mullangi R, Srinivas NR. Prediction of clinical pharmacokinetic parameters of linezolid using animal data by allometric scaling: applicability for the development of novel oxazolidinones. Xenobiotica. 2004; 34 (6) 571-9
- 32 Shim HJ, Kim YC, Lee JH, Kwon JW, Kim WB, Kim YG et al Interspecies pharmacokinetic scaling of DA-8159, a new erectogenic, in mice, rats, rabbits and dogs, and prediction of human pharmacokinetics. Biopharm Drug Dispos. 2005; 26 (7) 269-77
- 33 Gao W, Johnston JS, Miller DD, Dalton JT. Interspecies differences in pharmacokinetics and metabolism of S-3-(4-acetylamino-phenoxy)-2-hydroxy-2-methyl-N- (4-nitro-3-trifluoromethylphenyl)-propionamide: the role of N-ace-tyltransferase. Drug Metab Dispos. 2006; 34 (2) 254-60
- 34 Blaney SM, Takimoto C, Murry DJ, Kuttesch N, McCully C, Cole DE et al Plasma and cerebrospinal fluid pharmacokinetics of 9-aminocamptothecin (9-AC), irinotecan (CPT-11), and SN-38 in nonhuman primates. Cancer Chemother Pharmacol. 1998; 41: 464-468
- 35 Balram C, Zhou QY, Cheung YB, Lee EJ. Influence of multiple dose activated charcoal on the disposition kinetics of irinotecan in rats. Drug Metab Drug Inter. 2002; 19: 137-148
- 36 Chu XY, Kato Y, Sugiyama Y. Multiplicity of Biliary Excretion Mechanisms for Irinotecan, CPT-11, and its metabolites in Rats. Cancer Res. 1997; 57: 1934-1938
- 37 Gupta E, Safa AR, Wang X, Ratain MJ. Pharmacokinetic Modulation of Irinotecan and Metabolites by Cyclosporin A. Cancer Res. 1996; 56: 1309-1314
- 38 Nagilla R, Ward KW. A Comprehensive Analysis of the Role of Correction factors in the Allometric Predictivity of Clearance from Rat, Dog, and Monkey to Humans. J Pharm. Sci. 2004; 93: 2522-2534
- 39 Pavankumar VV, Vinu CA, Mullangi R, Srinivas NR. Preclinical pharmacokinetics and interspecies scaling of ragagli-tazar, a novel biliary excreted PPAR dual activator. Eu J Drug Metab Pharmacol. 2007; 32: 29-37
- 40 Kaneda N, Nagata H, Furuta T, Yokokura T. Metabolism and Pharmacokinetics of the Camptothecin Analogue CPT-11 in the mouse. Cancer Res. 1990; 50: 1715-1720
- 41 Zamboni WC, Hougton PJ, Thompson J, Cheshire PJ, Hanna SK, Richmond LB et al Altered Irinotecan and SN-38 Disposition after Intravenous Administration of Irinotecan in mice Bearing Human Neuroblastoma Xenografts. Clin Cancer Res. 1998; 4: 455-462
- 42 Kaneda N, Yokokura T. Nonlinear Pharmacokinetics of CPT-11 in Rats. Cancer Res. 1990; 50: 1721-1725
- 43 Inaba M, Ohnishi Y, Ishii H, Tanioka Y, Yoshida Y, Sudoh K et al Pharmacokinetics of CPT-11 in rhesus monkeys. Cancer Chemother Pharmacol. 1998; 41: 103-108
- 44 Van Groeningen CJ, Van der Vijgh WJF, Baars JJ, Stieltjes H, Huibregtse K, Pinedo H. Altered Pharmacokinetics and Metabolism of CPT-11 in liver Dysfunction: A need for Guidelines. Clin Cancer Res. 2000; 6: 1342-1346
- 45 Kehrer DFS, Yamamoto W, Verweij J, de Jonge MJA, de Bruijn P, Sparreboom A. Factors involved in the Prolongation of the terminal disposition Phase of SN-38: Clinical and experimental studies. Clin Cancer Res. 2000; 6: 3451-3458
- 46 Xie R, Mathijssen RHJ, Sparreboom A, Verweij J, Karlsson MO. Clinical Pharmacokinetics of Irinotecan and its metabolites: A population analysis. J Clin Oncol. 2002; a 20: 3293-3301
- 47 Poujol S, Bressolle F, Duffour J, Abderrahim AG, Astre C, Ychou M et al Pharmacokinetics and pharmacodynamics of irinotecan and its metabolites from plasma and saliva data in patients with metastatic digestive cancer receiving Folfiri regimen. Cancer Chemother Pharmacol. 2006; 58: 292-305
- 48 Klein CE, Gupta E, Reid JM, Atherton PJ, Sloan JA, Pitot HC et al Population pharmacokinetic model for irinotecan and two of its metabolites, SN-38 and SN-38 glucuronide. Clin Pharmacol Ther. 2002; 72: 638-647
- 49 Xie R, Mathijssen RHJ, Sparreboom A, Verweij J, Karlsson MO. Clinical Pharmacokinetics of irinotecan and its metabolites in relation with diarrhea. Clin Pharmacol Ther. 2002; b 72: 265-275
- 50 Pitot HC, Goldberg RM, Reid JM, Sloan JA, Skaff PA, Erlich-man C et al Phase I Dose-finding and Pharmacokinetic Trial of Irinotecan Hydrochloride (CPT-11) Using a Once-Every-Three-Week Dosing Schedule for Patients with Advanced Solid Tumor Malignancy. Clin Cancer Re.s. 2000; 6: 2236-2244
- 51 Vassal G, Santos A, Deroussent A, Doz F, Frappaz D, Pein F et al Clinical Pharmacology of Irinotecan (CPT-11) in children (Meeting abstract). 1998 Abstract No. 720; ASCO Annual Meeting.