Semin Respir Crit Care Med 2011; 32(5): 581-586
DOI: 10.1055/s-0031-1287866
© Thieme Medical Publishers

Organ Failure in the ICU: Cellular Alterations

James N. Fullerton1 , Mervyn Singer2
  • 1Division of Medicine, Centre for Clinical Pharmacology, Rayne Institute, London, United Kingdom
  • 2Department of Intensive Care Medicine, University College London, London, United Kingdom
Further Information

Publication History

Publication Date:
11 October 2011 (online)

ABSTRACT

The physiological and biochemical abnormalities that constitute multiple organ failure represent cellular perturbations that, importantly, need to be reconciled with a lack of significant cell death together with availability but impaired utilization of oxygen. In conjunction with the relatively rapid ability of the organ to recover in surviving patients, a paradigm of metabolic shutdown triggered by a decrease in mitochondrial energy production appears increasingly valid. This review discusses data demonstrating temporal changes in oxygen utilization through the septic process, evidence for mitochondrial derangements, and recovery of mitochondrial function preceding clinical recovery.

REFERENCES

  • 1 Brealey D, Singer M. Mitochondrial dysfunction in sepsis.  Curr Infect Dis Rep. 2003;  5 (5) 365-371
  • 2 Abraham E A, Singer M. Mechanisms of sepsis-induced organ dysfunction.  Crit Care Med. 2007;  35 (10) 2408-2416
  • 3 Hotchkiss R S, Karl I E. The pathophysiology and treatment of sepsis.  N Engl J Med. 2003;  348 (2) 138-150
  • 4 Singer M, De Santis V, Vitale D, Jeffcoate W. Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation.  Lancet. 2004;  364 (9433) 545-548
  • 5 Parrillo J E. Pathogenetic mechanisms of septic shock.  N Engl J Med. 1993;  328 (20) 1471-1477
  • 6 Martin G S, Mannino D M, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000.  N Engl J Med. 2003;  348 (16) 1546-1554
  • 7 Annane D, Aegerter P, Jars-Guincestre M C, Guidet B. CUB-Réa Network . Current epidemiology of septic shock: the CUB-Réa Network.  Am J Respir Crit Care Med. 2003;  168 (2) 165-172
  • 8 Bernard G R. Acute respiratory distress syndrome: a historical perspective.  Am J Respir Crit Care Med. 2005;  172 (7) 798-806
  • 9 Takeuchi O, Akira S. Toll-like receptors; their physiological role and signal transduction system.  Int Immunopharmacol. 2001;  1 (4) 625-635
  • 10 Tang B M, McLean A S, Dawes I W, Huang S J, Cowley M J, Lin R C. Gene-expression profiling of gram-positive and gram-negative sepsis in critically ill patients.  Crit Care Med. 2008;  36 (4) 1125-1128
  • 11 Sriskandan S, Cohen J. Gram-positive sepsis: mechanisms and differences from gram-negative sepsis.  Infect Dis Clin North Am. 1999;  13 (2) 397-412
  • 12 Zhang Q, Raoof M, Chen Y et al.. Circulating mitochondrial DAMPs cause inflammatory responses to injury.  Nature. 2010;  464 (7285) 104-107
  • 13 Xu J, Zhang X, Pelayo R et al.. Extracellular histones are major mediators of death in sepsis.  Nat Med. 2009;  15 (11) 1318-1321
  • 14 Jenner R G, Young R A. Insights into host responses against pathogens from transcriptional profiling.  Nat Rev Microbiol. 2005;  3 (4) 281-294
  • 15 Thomas T L. Germs.  N Engl J Med. 1972;  287 (11) 553-555
  • 16 Annane D, Bellissant E, Cavaillon J M. Septic shock.  Lancet. 2005;  365 (9453) 63-78
  • 17 Hotchkiss R S, Swanson P E, Freeman B D et al.. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction.  Crit Care Med. 1999;  27 (7) 1230-1251
  • 18 Noble J S, MacKirdy F N, Donaldson S I, Howie J C. Renal and respiratory failure in Scottish ICUs.  Anaesthesia. 2001;  56 (2) 124-129
  • 19 Ince C, Sinaasappel M. Microcirculatory oxygenation and shunting in sepsis and shock.  Crit Care Med. 1999;  27 (7) 1369-1377
  • 20 Boerma E C, van der Voort P H, Spronk P E, Ince C. Relationship between sublingual and intestinal microcirculatory perfusion in patients with abdominal sepsis.  Crit Care Med. 2007;  35 (4) 1055-1060
  • 21 Boekstegers P, Weidenhöfer S, Kapsner T, Werdan K. Skeletal muscle partial pressure of oxygen in patients with sepsis.  Crit Care Med. 1994;  22 (4) 640-650
  • 22 VanderMeer T J, Wang H, Fink M P. Endotoxemia causes ileal mucosal acidosis in the absence of mucosal hypoxia in a normodynamic porcine model of septic shock.  Crit Care Med. 1995;  23 (7) 1217-1226
  • 23 Rosser D M, Stidwill R P, Jacobson D, Singer M. Oxygen tension in the bladder epithelium rises in both high and low cardiac output endotoxemic sepsis.  J Appl Physiol. 1995;  79 (6) 1878-1882
  • 24 Brealey D, Brand M, Hargreaves I et al.. Association between mitochondrial dysfunction and severity and outcome of septic shock.  Lancet. 2002;  360 (9328) 219-223
  • 25 Soop A, Albert J, Weitzberg E, Bengtsson A, Lundberg J O, Sollevi A. Complement activation, endothelin-1 and neuropeptide Y in relation to the cardiovascular response to endotoxin-induced systemic inflammation in healthy volunteers.  Acta Anaesthesiol Scand. 2004;  48 (1) 74-81
  • 26 Kreymann G, Grosser S, Buggisch P, Gottschall C, Matthaei S, Greten H. Oxygen consumption and resting metabolic rate in sepsis, sepsis syndrome, and septic shock.  Crit Care Med. 1993;  21 (7) 1012-1019
  • 27 Uehara M, Plank L D, Hill G L. Components of energy expenditure in patients with severe sepsis and major trauma: a basis for clinical care.  Crit Care Med. 1999;  27 (7) 1295-1302
  • 28 Carré J E, Orban J-C, Re L et al.. Survival in critical illness is associated with early activation of mitochondrial biogenesis.  Am J Respir Crit Care Med. 2010;  182 (6) 745-751
  • 29 Adrie C, Bachelet M, Vayssier-Taussat M et al.. Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis.  Am J Respir Crit Care Med. 2001;  164 (3) 389-395
  • 30 Szabó C. Hydrogen sulphide and its therapeutic potential.  Nat Rev Drug Discov. 2007;  6 (11) 917-935
  • 31 Frost M T, Wang Q, Moncada S, Singer M. Hypoxia accelerates nitric oxide-dependent inhibition of mitochondrial complex I in activated macrophages.  Am J Physiol Regul Integr Comp Physiol. 2005;  288 (2) R394-R400
  • 32 Lowes D A, Galley H F. Mitochondrial protection by the thioredoxin-2 and glutathione systems in an in vitro endothelial model of sepsis.  Biochem J. 2011;  436 (1) 123-132
  • 33 Protti A, Carré J, Frost M T et al.. Succinate recovers mitochondrial oxygen consumption in septic rat skeletal muscle.  Crit Care Med. 2007;  35 (9) 2150-2155
  • 34 Lowes D A, Thottakam B MV, Webster N R, Murphy M P, Galley H F. The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis.  Free Radic Biol Med. 2008;  45 (11) 1559-1565
  • 35 Calvano S E, Xiao W, Richards D R Inflamm and Host Response to Injury Large Scale Collab. Res. Program et al. A network-based analysis of systemic inflammation in humans.  Nature. 2005;  437 (7061) 1032-1037
  • 36 Vanhorebeek I, De Vos R, Mesotten D, Wouters P J, De Wolf-Peeters C, Van den Berghe G. Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients.  Lancet. 2005;  365 (9453) 53-59
  • 37 Haden D W, Suliman H B, Carraway M S et al.. Mitochondrial biogenesis restores oxidative metabolism during Staphylococcus aureus sepsis.  Am J Respir Crit Care Med. 2007;  176 (8) 768-777
  • 38 Lancel S, Hassoun S M, Favory R, Decoster B, Motterlini R, Neviere R. Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis.  J Pharmacol Exp Ther. 2009;  329 (2) 641-648
  • 39 Hotchkiss R S, Strasser A, McDunn J E, Swanson P E. Cell death.  N Engl J Med. 2009;  361 (16) 1570-1583
  • 40 Boya P, González-Polo R A, Casares N et al.. Inhibition of macroautophagy triggers apoptosis.  Mol Cell Biol. 2005;  25 (3) 1025-1040
  • 41 Galluzzi L, Maiuri M C, Vitale I et al.. Cell death modalities: classification and pathophysiological implications.  Cell Death Differ. 2007;  14 (7) 1237-1243
  • 42 Kroemer G, Galluzzi L, Vandenabeele P Nomenclature Committee on Cell Death 2009 et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009.  Cell Death Differ. 2009;  16 (1) 3-11
  • 43 Danial N N, Korsmeyer S J. Cell death: critical control points.  Cell. 2004;  116 (2) 205-219
  • 44 Janeway Jr C A. Approaching the asymptote? Evolution and revolution in immunology.  Cold Spring Harb Symp Quant Biol. 1989;  54 (Pt 1) 1-13
  • 45 Sancho D, Joffre O P, Keller A M et al.. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity.  Nature. 2009;  458 (7240) 899-903
  • 46 Lotze M T, Tracey K J. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal.  Nat Rev Immunol. 2005;  5 (4) 331-342
  • 47 Hotchkiss R S, Chang K C, Grayson M H et al.. Adoptive transfer of apoptotic splenocytes worsens survival, whereas adoptive transfer of necrotic splenocytes improves survival in sepsis.  Proc Natl Acad Sci U S A. 2003;  100 (11) 6724-6729
  • 48 Hotchkiss R S, Tinsley K W, Swanson P E et al.. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4 + T lymphocytes in humans.  J Immunol. 2001;  166 (11) 6952-6963
  • 49 Hotchkiss R S, Tinsley K W, Swanson P E et al.. Depletion of dendritic cells, but not macrophages, in patients with sepsis.  J Immunol. 2002;  168 (5) 2493-2500
  • 50 Hotchkiss R S, Tinsley K W, Swanson P E et al.. Prevention of lymphocyte cell death in sepsis improves survival in mice.  Proc Natl Acad Sci U S A. 1999;  96 (25) 14541-14546
  • 51 Voll R E, Herrmann M, Roth E A, Stach C, Kalden J R, Girkontaite I. Immunosuppressive effects of apoptotic cells.  Nature. 1997;  390 (6658) 350-351
  • 52 Green D R, Beere H M. Apoptosis. Gone but not forgotten.  Nature. 2000;  405 (6782) 28-29
  • 53 Hotchkiss R S, Chang K C, Swanson P E et al.. Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte.  Nat Immunol. 2000;  1 (6) 496-501
  • 54 Ayala A, Perl M, Venet F, Lomas-Neira J, Swan R, Chung C S. Apoptosis in sepsis: mechanisms, clinical impact and potential therapeutic targets.  Curr Pharm Des. 2008;  14 (19) 1853-1859

Mervyn SingerM.D. F.R.C.P. 

Department of Intensive Care Medicine, University College London

Cruciform Bldg., Gower St., London WC1E 6BT, UK

Email: m.singer@ucl.ac.uk

    >