RSS-Feed abonnieren
DOI: 10.1055/s-0031-1281768
© Georg Thieme Verlag KG Stuttgart · New York
Mirror Therapy in Lower Limb Amputees – A Look Beyond Primary Motor Cortex Reorganization
Spiegeltherapie bei Beinamputierten – mehr als Reorganisation des primär-motorischen KortexPublikationsverlauf
received: 30.4.2011
accepted: 27.8.2011
Publikationsdatum:
28. September 2011 (online)

Zusammenfassung
Ziel: Untersuchungen an Armamputierten konnten einen Zusammenhang zwischen Reorganisation im primären sensomotorischen Kortex und Phantomschmerz zeigen. Die Spiegeltherapie wird als nicht invasives Therapieverfahren zur Behandlung von Phantomschmerzen eingesetzt. Ziel dieser Studie war die Untersuchung kortikaler Reorganisationsphänomene vor und nach Spiegeltherapie bei Beinamputierten. Material und Methoden: Acht Beinamputierte absolvierten 12 Spiegeltherapiesitzungen, bei denen repetitive Extensions- und Flexionsbewegungen der gesunden unteren Extremität durchgeführt wurden. Vor der ersten und nach der letzten Therapiesitzung wurden fMRT-Messungen durchgeführt, bei denen die funktionelle Organisation repetitiver Bewegungen im gesunden und amputierten Sprunggelenk getestet wurde. Ergebnisse: Die mittlere Intensität des subjektiven Phantomschmerzes betrug vor der Spiegeltherapie 4,6 ± 3,1 auf einer visuellen Analogskala und verringerte sich auf 1,8 ± 1,7 (p = 0,04) nach der Therapie. Es konnten keine konsistenten Aktivierungen des primären sensomotorischen Kortex während der Bewegungen des Phantomsprunggelenks im Vergleich zur Ruhebedingung nachgewiesen werden. Nach der Spiegeltherapie zeigten die Patienten erhöhte Aktivität im rechten orbitofrontalen Kortex während Bewegungen des Phantomsprunggelenks. Der Vergleich zwischen Bewegungen des gesunden und des Phantomsprunggelenks zeigte eine signifikant höhere Aktivität im linken inferioren frontalen Kortex (Pars triangularis). Schlussfolgerung: Diese Ergebnisse stellen den bisher bekannten Zusammenhang zwischen kortikaler Reorganisation im primären sensomotorischen Kortex und Phantomschmerzen infrage und weisen auf die Veränderungen im sogenannten „Motor-Netzwerk“ hin. Die Phantomschmerzreduktion nach Spiegeltherapie wurde von einer erhöhten präfrontalen kortikalen Aktivität begleitet.
Abstract
Purpose: Phantom pain in upper limb amputees is associated with the extent of reorganization in the primary sensorimotor cortex. Mirror visual feedback therapy has been shown to improve phantom pain. We investigated the extent of cortical reorganization in lower limb amputees and changes in neural activity induced by mirror therapy. Materials and Methods: Eight lower limb amputees underwent 12 sessions of MVFT and functional magnetic resonance imaging (fMRI) of the brain before the first and after the last MVFT session. FMRI sessions consisted of two runs in which subjects were instructed to perform repetitive movement of the healthy and phantom ankle. Results: Before MVFT, the mean phantom pain intensity was 4.6 ± 3.1 on a visual analog scale and decreased to 1.8 ± 1.7 (p = 0.04). We did not observe a consistent pattern of cortical activation in primary sensorimotor areas during phantom limb movements. Following MVFT, increased activity was obtained in the right orbitofrontal cortex during phantom ankle movements. Comparison of cortical activity during movements of the phantom ankle and the intact ankle showed significantly higher activity in the left inferior frontal cortex (pars triangularis). Conclusion: These results question the known association between phantom pain and primary sensorimotor reorganization and propose reorganizational changes involving multiple cortical areas in lower limb amputees. Finally, reduction of phantom pain after mirror visual feedback therapy was associated with increased prefrontal cortical activity during phantom ankle movements.
Key words
MR functional imaging - neural networks - brain
References
- 1
Moller F, Ulmer S, Wolff S et al.
Cortical reorganization in children with connatal spastic hemiparesis – a functional
magnetic resonance imaging (FMRI) study.
Fortschr Röntgenstr.
2005;
177
1552-1561
MissingFormLabel
- 2
Flor H, Birbaumer N.
Phantom limb pain: cortical plasticity and novel therapeutic approaches.
Curr Opin Anaesthesiol.
2000;
13
561-564
MissingFormLabel
- 3
Yang T T, Gallen C, Schwartz B et al.
Sensory maps in the human brain.
Nature.
1994;
368
592-593
MissingFormLabel
- 4
Elbert T, Flor H, Birbaumer N et al.
Extensive reorganization of the somatosensory cortex in adult humans after nervous
system injury.
Neuroreport.
1994;
5
2593-2597
MissingFormLabel
- 5
Flor H, Elbert T, Knecht S et al.
Phantom-limb pain as a perceptual correlate of cortical reorganization following arm
amputation.
Nature.
1995;
375
482-484
MissingFormLabel
- 6
Karl A, Birbaumer N, Lutzenberger W et al.
Reorganization of motor and somatosensory cortex in upper extremity amputees with
phantom limb pain.
J Neurosci.
2001;
21
3609-3618
MissingFormLabel
- 7
Lotze M, Flor H, Grodd W et al.
Phantom movements and pain. An fMRI study in upper limb amputees.
Brain.
2001;
124
2268-2277
MissingFormLabel
- 8
Chen R, Corwell B, Yaseen Z et al.
Mechanisms of cortical reorganization in lower-limb amputees.
J Neurosci.
1998;
18
3443-3450
MissingFormLabel
- 9
Schwenkreis P, Pleger B, Cornelius B et al.
Reorganization in the ipsilateral motor cortex of patients with lower limb amputation.
Neurosci Lett.
2003;
349
187-190
MissingFormLabel
- 10
McCabe C S, Haigh R C, Blake D R.
Mirror visual feedback for the treatment of complex regional pain syndrome (type 1).
Curr Pain Headache Rep.
2008;
12
103-107
MissingFormLabel
- 11
Cacchio A, De Blasis E, De Blasis V et al.
Mirror therapy in complex regional pain syndrome type 1 of the upper limb in stroke
patients.
Neurorehabil Neural Repair.
2009;
23
792-799
MissingFormLabel
- 12
Chan B L, Witt R, Charrow A P et al.
Mirror therapy for phantom limb pain.
N Engl J Med.
2007;
357
2206-2207
MissingFormLabel
- 13
Michielsen M E, Selles R W, Geest J N et al.
Motor recovery and cortical reorganization after mirror therapy in chronic stroke
patients: a phase II randomized controlled trial.
Neurorehabil Neural Repair.
2011;
25
223-233
MissingFormLabel
- 14
Altschuler E L, Wisdom S B, Stone van der L et al.
Rehabilitation of hemiparesis after stroke with a mirror.
Lancet.
1999;
353
2035-2036
MissingFormLabel
- 15
Michielsen M E, Smits M, Ribbers G M et al.
The neuronal correlates of mirror therapy: an fMRI study on mirror induced visual
illusions in patients with stroke.
J Neurol Neurosurg Psychiatry.
2011;
82
393-398
MissingFormLabel
- 16
MacIver K, Lloyd D M, Kelly S et al.
Phantom limb pain, cortical reorganization and the therapeutic effect of mental imagery.
Brain.
2008;
131
2181-2191
MissingFormLabel
- 17
Giraux P, Sirigu A.
Illusory movements of the paralyzed limb restore motor cortex activity.
Neuroimage.
2003;
20
S107-S111
MissingFormLabel
- 18
Rizzolatti G, Craighero L.
The mirror-neuron system.
Annu Rev Neurosci.
2004;
27
169-192
MissingFormLabel
- 19
Buccino G, Binkofski F, Fink G R et al.
Action observation activates premotor and parietal areas in a somatotopic manner:
an fMRI study.
Eur J Neurosci.
2001;
13
400-404
MissingFormLabel
- 20
Perani D, Fazio F, Borghese N A et al.
Different brain correlates for watching real and virtual hand actions.
Neuroimage.
2001;
14
749-758
MissingFormLabel
- 21
Peyron R, Laurent B, Garcia-Larrea L.
Functional imaging of brain responses to pain. A review and meta-analysis (2000).
Neurophysiol Clin.
2000;
30
263-288
MissingFormLabel
- 22
Rodgers W M, Hall C R, Blanchard C M et al.
Prediction of obligatory exercise by exercise-related imagery.
Psychol Addict Behav.
2001;
15
152-154
MissingFormLabel
- 23
Flor H, Elbert T, Muhlnickel W et al.
Cortical reorganization and phantom phenomena in congenital and traumatic upper-extremity
amputees.
Exp Brain Res.
1998;
119
205-212
MissingFormLabel
- 24
Roux F E, Lotterie J A, Cassol E et al.
Cortical areas involved in virtual movement of phantom limbs: comparison with normal
subjects.
Neurosurgery.
2003;
53
1342-1352
MissingFormLabel
- 25
Kapreli E, Athanasopoulos S, Papathanasiou M et al.
Lower limb sensorimotor network: issues of somatotopy and overlap.
Cortex.
2007;
43
219-232
MissingFormLabel
- 26
Taylor K S, Anastakis D J, Davis K D.
Cutting your nerve changes your brain.
Brain.
2009;
132
3122-3133
MissingFormLabel
- 27
Rath J, Klinger N, Geissler A et al.
An fMRI Marker for Peripheral Nerve Regeneration.
Neurorehabil Neural Repair.
2011;
25
577-579
MissingFormLabel
- 28
Nedelko V, Hassa T, Hamzei F et al.
Age-independent activation in areas of the mirror neuron system during action observation
and action imagery. A fMRI study.
Restor Neurol Neurosci.
2010;
28
737-747
MissingFormLabel
- 29
Weeks S R, Tsao J W.
Incorporation of another person’s limb into body image relieves phantom limb pain:
a case study.
Neurocase.
2010;
16
461-465
MissingFormLabel
- 30
Jahn K, Deutschlander A, Stephan T et al.
Brain activation patterns during imagined stance and locomotion in functional magnetic
resonance imaging.
Neuroimage.
2004;
22
1722-1731
MissingFormLabel
- 31
Lotze M, Montoya P, Erb M et al.
Activation of cortical and cerebellar motor areas during executed and imagined hand
movements: an fMRI study.
J Cogn Neurosci.
1999;
11
491-501
MissingFormLabel
- 32
Szameitat A J, Shen S, Sterr A.
Motor imagery of complex everyday movements. An fMRI study.
Neuroimage.
2007;
34
702-713
MissingFormLabel
- 33
Olivetti B M, Palmiero M, Sestieri C et al.
An fMRI investigation on image generation in different sensory modalities: the influence
of vividness.
Acta Psychol.
2009;
132
190-200
MissingFormLabel
- 34
Malouin F, Richards C L, Durand A et al.
Effects of practice, visual loss, limb amputation, and disuse on motor imagery vividness.
Neurorehabil Neural Repair.
2009;
23
449-463
MissingFormLabel
- 35
Molenberghs P, Brander C, Mattingley J B et al.
The role of the superior temporal sulcus and the mirror neuron system in imitation.
Hum Brain Mapp.
2010;
31
1316-1326
MissingFormLabel
- 36
Moulton E A, Pendse G, Morris S et al.
Capsaicin-induced thermal hyperalgesia and sensitization in the human trigeminal nociceptive
pathway: an fMRI study.
Neuroimage.
2007;
35
1586-1600
MissingFormLabel
- 37
Halsband U, Lange R K.
Motor learning in man: a review of functional and clinical studies.
J Physiol Paris.
2006;
99
414-424
MissingFormLabel
- 38
Fink G R, Marshall J C, Halligan P W et al.
The neural consequences of conflict between intention and the senses.
Brain.
1999;
122
497-512
MissingFormLabel
- 39
Bantick S J, Wise R G, Ploghaus A et al.
Imaging how attention modulates pain in humans using functional MRI.
Brain.
2002;
125
310-319
MissingFormLabel
- 40
Johnson-Frey S H, Maloof F R, Newman-Norlund R et al.
Actions or hand-object interactions? Human inferior frontal cortex and action observation.
Neuron.
2003;
39
1053-1058
MissingFormLabel
- 41
Bookheimer S.
Functional MRI of language: new approaches to understanding the cortical organization
of semantic processing.
Annu Rev Neurosci.
2002;
25
151-188
MissingFormLabel
- 42
Greenfield S A.
A noncholinergic action of acetylcholinesterase (AChE) in the brain: from neuronal
secretion to the generation of movement.
Cell Mol Neurobiol.
1991;
11
55-77
MissingFormLabel
- 43
Diers M, Christmann C, Koeppe C et al.
Mirrored, imagined and executed movements differentially activate sensorimotor cortex
in amputees with and without phantom limb pain.
Pain.
2010;
149
296-304
MissingFormLabel
- 44
Dechent P, Frahm J.
Functional somatotopy of finger representations in human primary motor cortex.
Hum Brain Mapp.
2003;
18
272-83
MissingFormLabel
- 45
Schlamann M, Yoon M S, Maderwald S et al.
Effects of MRI on the electrophysiology of the motor cortex: a TMS study.
Fortschr Röntgenstr.
2009;
181
215-219
MissingFormLabel
Dr. Stefan Seidel
Department of Neurology, Medical University of Vienna
Währinger Gürtel 18 – 20
1090 Vienna
Austria
Telefon: + 43/1/4 04 00 31 20
Fax: + 43/1/4 04 00 31 41
eMail: stefan.seidel@meduniwien.ac.at