Fortschr Neurol Psychiatr 2011; 79(12): 692-695
DOI: 10.1055/s-0031-1281596
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Die Neuropsychologie der nigrostriatalen dopaminergen Transmission am Beispiel des Morbus Parkinson

The Neuropsychology of Nigrostriatal Dopaminergic Transmission in Parkinson’s DiseaseC. Wallesch1
  • 1BDH-Klinik Elzach
Further Information

Publication History

Publication Date:
18 October 2011 (online)

Zusammenfassung

Über kortiko-subkortiko-kortikale Schleifensysteme beeinflusst die dopaminerge Modulation auf der Ebene des Striatums nicht nur motorische Funktionen, sondern auch andere kortikale Efferenzen. Es wird eine Übersicht über neuropsychologische Befunde bei Morbus Parkinson gegeben und versucht, diese systemphysiologisch zu interpretieren. Die Theorie des „supervisory attentional system“ von Norman und Shallice (1986) erscheint geeignet, die Rolle von frontalem Kortex und Basalganglien in der Handlungssteuerung zu erklären.

Abstract

Through cortico-subcortico-cortical loop systems, the dopaminergic modulation influences not only motor, but also other executive functions. Neurospychological findings in Parkinson’s disease are reviewed and physiologically interpreted. The theory of a 'supervisory attentional system” according to Norman and Shallice (1986) seems to be an adequate model of the interaction of cortex and basal ganglia in executive function and control.

Literatur

  • 1 Elgh E, Domellöf M, Linder J et al. Cognitive function in early Parkinson’s disease: a population-based study.  Eur J Neurol. 2009;  16 1278-1284
  • 2 Aarsland D, Marsh L, Schrag A. Neuropsychiatric symptoms in Parkinson’s disease.  Mov Disord. 2009;  24 2175-2188
  • 3 Alexander G E, DeLong M R, Strick P L et al. Parallel organization of functionally segregated circuits linking basal ganglia and cortex.  Ann Rev Neurosci. 1986;  9 357-382
  • 4 Taylor A E, Saint-Cyr J A, Lang A E. Parkinson’s disease. Cognitive changes in relation to treatment response.  Brain. 1987;  110 35-51
  • 5 Zimmermann P, Sprengelmeyer R, Fimm B et al. Cognitive slowing in decision tasks in early and advanced Parkinson’s disease.  Brain Cogn. 1992;  18 60-69
  • 6 Wallesch C W, Karnath H O, Papagno C et al. Parkinson’s disease patients’ behaviour in a covered maze learning task.  Neuropsychologia. 1990;  28 839-849
  • 7 Shipley B A, Deary I J, Tan J et al. Efficiency of temporal order discrimination as an indicator of bradyphrenia in Parkinson‘s disease: the inspection time loop task.  Neuropsychologia. 2002;  40 1488-1493
  • 8 Dobbs R J, Bowes S G, Charlett A et al. Hypothesis: the bradyphrenia of Parkinson’s disease is a nosological entity.  Acta Neurol Scand. 1993;  87 255-261
  • 9 Russ M O, Seger L. The effect of task complexity on reaction times in memory scanning and visual discrimination in Parkinson’s disease.  Neuropsychologia. 1995;  33 561-575
  • 10 Spicer K B, Brown G G, Gorell J M. Lexical decision in Parkinson disease: lack of evidence for generalized bradyphrenia.  J Cin Exp Neuropsychol. 1994;  16 457-471
  • 11 Duncombe M E, Bradshaw J L, Iansek R et al. Parkinsonian patients without dementia do not suffer from bradyphrenia as indexed by performance in mental rotation tasks with and without advance information.  Neuropsychologia. 1994;  32 1393-1396
  • 12 Helscher R J, Pinter M M. Speed and power of higher cerebral functions in parkinsonian patients.  J Neural Transm Park Dis Dement Sect. 1993;  5 35-44
  • 13 Fimm B, Bartl G, Zimmermann P et al. Different mechanisms underly shifting set on external and internal cues in Parkinson’s disease.  Brain Cogn. 1994;  25 287-304
  • 14 Poewe W, Berger W, Benke T et al. High-speed memory scanning in Parkinson’s disease: adverse effects of levodopa.  Ann Neurol. 1991;  29 670-673
  • 15 Lewis S JG, Cools R, Robbins T W et al. Using executive heterogeneity to explore the nature of working memory deficits in Parkinson’s disease.  Neuropsychologia. 2003;  41 645-654
  • 16 Brown R G, Marsden C D. Cognitive function in Parkinson’s disease: from description to theory.  TINS. 1990;  13 21-28
  • 17 Cheesman A L, Barker R A, Lewis S JG et al. Lateralisation of striatal function: evidence from 18F-Dopa PET in Parkinson’s disease.  J Neurol Neurosurg Psychiat. 2005;  76 1204-1210
  • 18 Lewis S JG, Slabosz A, Robbins T W et al. Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson’s disease.  Neuropsychologia. 2005;  43 823-832
  • 19 Frank M J, Seeberger L C, O’Reilly R C. By carrot or by stick: cognitive reinforcement learning in parkinsonism.  Science. 2004;  306 1940-1943
  • 20 Bodden M E, Mollenhauer B, Trenkwalder C et al. Affective and cognitive Theory of Mind in patients with Parkinson’s disease.  Parkinsonism Relat Disord. 2010;  16 466-470
  • 21 Koch G, Brusa L, Oliveri M et al. Memory for time intervals is impaired in left hemi-Parkinson patients.  Neuropsychologia. 2005;  43 1163-1167
  • 22 Pastor M A, Artieda J, Jahanshahi M et al. Time estimation and reproduction is abnormal in Parkinson’s disease.  Brain. 1993;  160 39-52
  • 23 Mohr E, Litvan I, Williams J et al. Selective deficits in cognition and memory in high-functioning Parkinsonian patients.  J Neurol Neurosurg Psychiat. 1990;  53 603-606
  • 24 Rodnitzky R L. Visual dysfunction. In: Pfeiffer R F, Bodis-Wollner I, (eds) Parkinson’s disease and nonmotor dysfunction. Totowa: Humana Press; 2005: 223-231
  • 25 Bodis-Wollner I, Antal A. Primary visual and visuocognitive deficits. In: Pfeiffer R F, (eds) Parkinson’s disease and nonmotor dysfunction. Totowa: Humana Press; 2005: 233-244
  • 26 Canavan A GM, Passingham R E, Marsden C D. Prism adaptation and other tasks involving spatial abilities in patients with Parkinson’s disease, patients with frontal lobe lesions and patients with unilateral temporal lobectomies.  Neuropsychologia. 1990;  28 969-984
  • 27 Levin B E, Llabre M M, Reisman S et al. Visuospatial impairment in Parkinson’s disease.  Neurology. 1991;  41 365-369
  • 28 Crucian G P, Barrett A M, Schwartz R L et al. Cognitive and vestibulo-proprioceptive components of spatial ability in Parkinson’s disease.  Neuropsychologia. 2000;  38 757-767
  • 29 Uc E Y, Rizzo M, Johnson A M et al. Road safety in drivers with Parkinson disease.  Neurology. 2009;  73 211-2119
  • 30 Saint-Cyr J A, Taylor A E, Trepanier L L. et al .The caudate nucleus: head ganglion oft the habit system. In: Vallar G, Cappa S F, Wallesch C W, (eds) Neuropsychological disorders associated with subcortical lesions.. Oxford: Oxford Science Publications; 1992
  • 31 Knowlton B J, Mangels J A, Squire L R. A neostriatal habit learning system in humans.  Science. 1996;  273 1399-1402
  • 32 Saint C yr JA, Taylor A E. The mobilization of procedural learning: The „key signature“ of the basal ganglia. In: Squire L, Butters N, (eds) Neuropsychology of memory,. 2nd ed. New York: Guildford;
  • 33 Taylor A E, Saint-Cyr J A, Lang A E. Memory and learning in early Parkinson’s disease. Evidence for a „frontal lobe syndrome“.  Brain Cogn. 1990;  13 211-232
  • 34 Ell S W, Weinstein A, Ivry R B. Rule-based categorization deficits in focal basal ganglia lesions and Parkinson’s disease patients.  Neuropsychologia. 2010;  48 2974-2976
  • 35 Bohlhalter S, Abela E, Weniger D et al. Impaired verbal memory in Parkinson disease: relationship to prefrontal dysfunction and sensory discrimination.  Behav Brain Funct. 2009;  5 49
  • 36 Dubois B, Pillon B. Cognitive deficits in Parkinson’s disease.  J Neurol. 1997;  244 2-8
  • 37 Cooper J A, Sagar H J, Doherty S M et al. Different effects of dopaminergic and anticholinergic therapies on cognitive and motor performance in Parkinson’s disease. A follow-up study of untreated patients.  Brain. 1992;  115 1701-1725
  • 38 Costa A, Peppe A, Dell’Agnello G et al. Dopamine and cognitive function in de novo subjects with Parkinson’s disease: effects of pramipexole and pergolide on Working memory.  Neuropsychologia. 2009;  47 1374-1381
  • 39 Brown R G, Marsden C D. Dual task performance and processing resources in normal subjects and patients with Parkinson’s disease.  Brain. 1991;  114 215-231
  • 40 Wu T, Hallett M. Neural correlates of duals task performance in patients with Parkinson’s disease.  J Neurol Neurosurg Psychiat. 2008;  79 760-766
  • 41 O‘Shea S, Morris M E, Iansek R. Dual task interference during gait in people with Parkinson’s disease: Effects of motor versus cognitive secondary tasks.  Physical Therapy. 2001;  82 888-897
  • 42 Lewis S J, Slabosz A, Robbins T W et al. Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson’s disease.  Neuropsychologia. 2006;  43 823-832
  • 43 Nieoullon A. Dopamine and the regulation of cognition and attention.  Prog Neurobiol. 2002;  67 53-83
  • 44 Nys G M, Santens P, Vingerhoets G. Horizontal and vertical attention orienting in Parkinson’s disease.  Brain Cogn. 2010;  74 179-185
  • 45 Norman D, Shallice T. Attention to action: willed and automatic control of behavior. In: Davidson R, Schwartz G, Shapiro D, (eds) Consciousness and self-regulation: Advances in research and theory.. Vol 4. New York: Plenum; 1986: 1-18
  • 46 Bouquet C A, Bonnaud V, Gil R. Investigation of supervisory attentional system functions in patients with Parkinson’s disease using the Hayling task.  J Clin Exp Neuropsychol. 2003;  25 751-760
  • 47 Alexander W H, Brown J W. Computational models of performance monitoring and cognitive control.  Topics in Cognitive Science. 2010;  1 1-20
  • 48 Damasio A R, Tranel D, Danasio H. Somatic markers and the guidance of behaviour: theory and preliminary testing. In: Levin H S, Eisenberg H M, Benton A L, (eds) Frontal lobe function and dysfunction,. New York: Oxford University Press; 1991: 217-229
  • 49 Damasio A R. The somatic marker hypothesis and the possible functions of the prefrontal cortex. In: Roberts A C, Robbins T W, Weiskrantz L, (eds) The prefrontal cortex: executive and cognitive functions,. Oxford: Oxford University Press; 1998: 36-50
  • 50 Dujardin K, Degreef J F, Rogelet P et al. Impairment of the supervisory attentional system in early untreated patients with Parkinson’s disease.  J Neurol. 1999;  246 783-788
  • 51 Rossi M, Gerschcovich E R, Achaval de D et al. Decision-making in Parkinson’s disease with and without pathological gambling.  Eur J Neurol. 2010;  17 97-102
  • 52 Robbins T W. Shifting and stopping: fronto-striatal substrates, neurochemical modulations and clinical implications.  Phil Trans R Soc B. 2007;  362 917-932
  • 53 Cameron I G, Watanabe M, Pari G et al. Executive impairment in Parkinson’s disease: response automaticity and task switching.  Neuropsychologia. 2010;  48 1948-1957
  • 54 Deco G, Rolls E T. Attention and working memory. A dynamical model of neuronal activity in the prefrontal cortex.  Eur J Neurosci. 2003;  18 2374-2390
  • 55 Barone P. Neurotransmission in Parkinson’s disease: beyond dopamine.  Eur J Neurol. 2010;  17 364-367

Prof. Dr. Claus W Wallesch

BDH-Klinik

Am Tannwald 1

79215 Elzach

Email: cwallesch@neuroklinik-elzach.de

    >