J Reconstr Microsurg 2011; 27(6): 377-382
DOI: 10.1055/s-0031-1281518
© Thieme Medical Publishers

Basic Training Model for Supermicrosurgery: A Novel Practice Card Model

Nobuhisa Matsumura1 , Yukio Horie1 , Takashi Shibata1 , Michiya Kubo1 , Nakamasa Hayashi2 , Shunro Endo2
  • 1Department of Neurosurgery, Saiseikai Toyama Hospital, Toyama, Japan
  • 2Department of Neurosurgery, Faculty of Medicine, University of Toyama, Toyama, Japan
Further Information

Publication History

Publication Date:
29 June 2011 (online)

ABSTRACT

Supermicrosurgery has been developed and reported the anastomosis of vessels with diameters of about 0.5 mm or less. The anastomosis of vessels of about 0.5 mm or less in diameter is technically more difficult than 1.0 mm or larger. This article describes a novel practice card model for acquiring basic supermicrosurgical techniques. A practice card is composed of very small-caliber silicone tubes simulating very small-caliber vessels and a thick paper. The silicone tube external diameters are 0.3, 0.5, or 0.7 mm. The thickness of the tube wall is 0.05 mm. Microsurgeons can easily begin to practice and warm up the supermicrosurgical suturing and anastomosing techniques using this nonvital practice card under a personal desk stereomicroscope in the office and an operating microscope in the operating room. This training model is a simple system for practicing basic supermicrosurgical techniques repeatedly and for warming up before a supermicrosurgical operation. This article also describes basic training regarding its use at high magnifications. This training-based supermicrosurgical skill may become a valuable technique for microsurgeons in many specialties.

REFERENCES

  • 1 Hong J P. The use of supermicrosurgery in lower extremity reconstruction: the next step in evolution.  Plast Reconstr Surg. 2009;  123 (1) 230-235
  • 2 Koshima I, Inagawa K, Urushibara K, Moriguchi T. Supermicrosurgical lymphaticovenular anastomosis for the treatment of lymphedema in the upper extremities.  J Reconstr Microsurg. 2000;  16 (6) 437-442
  • 3 Koshima I, Soeda S. Inferior epigastric artery skin flaps without rectus abdominis muscle.  Br J Plast Surg. 1989;  42 (6) 645-648
  • 4 Yamano Y. Replantation of the amputated distal part of the fingers.  J Hand Surg AM. 1985;  10 211-218
  • 5 Koshima I, Yamamoto T, Narushima M, Mihara M, Iida T. Perforator flaps and supermicrosurgery.  Clin Plast Surg. 2010;  37 (4) 683-689, vii–iii
  • 6 Miyamoto S, Kikuchi H, Karasawa J, Nagata I, Yamazoe N, Akiyama Y. Pitfalls in the surgical treatment of moyamoya disease. Operative techniques for refractory cases.  J Neurosurg. 1988;  68 (4) 537-543
  • 7 Touho H. A simple surgical technique of direct anastomosis for treatment of moyamoya disease: technical note.  Surg Neurol. 2004;  62 (4) 366-368
  • 8 Matsumura N, Hayashi N, Hamada H, Shibata T, Horie Y, Endo S. A newly designed training tool for microvascular anastomosis techniques: Microvascular practice card.  Surg Neurol. 2009;  71 (5) 616-620
  • 9 MacDonald J D. Learning to perform microvascular anastomosis.  Skull Base. 2005;  15 (3) 229-240
  • 10 Yonekawa Y, Frick R, Roth P, Taub E, Imhof H G. Laboratory training in microsurgical techniques and microvascular anastomosis.  Oper Tech Neurosurg. 1999;  2 149-158
  • 11 Chan W Y, Matteucci P, Southern S J. Validation of microsurgical models in microsurgery training and competence: a review.  Microsurgery. 2007;  27 (5) 494-499
  • 12 Fujimaki A, O'Brien B M, Kurata T, Threlfall G N. Experimental micro-anastomosis of 0.4-0.5 mm vessels.  Br J Plast Surg. 1977;  30 (4) 269-272
  • 13 Ikuta Y. Studies on small vessel anastomosis.  Hiroshima J Med Sci. 1968;  17 (4) 285-311
  • 14 Huang C D, Chow S P, Chan C W. Experience with anastomoses of arteries approximately 0.20 mm in external diameter.  Plast Reconstr Surg. 1982;  69 (2) 299-305
  • 15 Ozkan O, Koshima I, Gonda K. A supermicrosurgical flap model in the rat: a free true abdominal perforator flap with a short pedicle.  Plast Reconstr Surg. 2006;  117 (2) 479-485
  • 16 Narushima M, Koshima I, Mihara M, Uchida G, Gonda K. Intravascular stenting (IVaS) for safe and precise supermicrosurgery.  Ann Plast Surg. 2008;  60 (1) 41-44
  • 17 Yamashita S, Sugiyama N, Hasegawa K, Namba Y, Kimata Y. A novel model for supermicrosurgery training: the superficial inferior epigastric artery flap in rats.  J Reconstr Microsurg. 2008;  24 (8) 537-543
  • 18 Awwad A M. A training card for microsurgery.  Microsurgery. 1984;  5 (3) 160
  • 19 Crosby N L, Clapson J B, Buncke H J, Newlin L. Advanced non-animal microsurgical exercises.  Microsurgery. 1995;  16 (9) 655-658
  • 20 Rayan B, Rayan G M. Microsurgery training card: a practical, economic tool for basic techniques.  J Reconstr Microsurg. 2006;  22 (4) 273-275, discussion 276
  • 21 Usón J, Calles M C. Design of a new suture practice card for microsurgical training.  Microsurgery. 2002;  22 (8) 324-328
  • 22 Kuroshima N. Modern technology-assisted microsurgery for innominate vessels. [in Japanese].  J Jpn SRM. 2008;  21 347-352
  • 23 Kuroshima N. The next generation of microsurgery.[in Japanese].  Orthop Surg Traumatol. 2006;  49 727-731
  • 24 Matsumura N, Shibata T, Umemura K, Nagao S, Horie Y. Extracranial-intracranial bypass surgery at high magnification using a new high-resolution operating microscope: technical note.  Surg Neurol. 2009;  72 (6) 690-694

Nobuhisa MatsumuraM.D. 

Department of Neurosurgery, Saiseikai Toyama Hospital

33-1 Kusunoki, Toyama 931-8533, Japan

Email: sanataka@pk.ctt.ne.jp

    >