Semin Reprod Med 2011; 29(4): 308-316
DOI: 10.1055/s-0031-1280916
© Thieme Medical Publishers

Mechanisms and Models of Immune Tolerance Breakdown in the Ovary

Mickie H. Cheng1 , Lawrence M. Nelson2
  • 1University of California San Francisco Diabetes Center, San Francisco, California
  • 2Integrative Reproductive Medicine Group, Intramural Research Program on Reproductive and Adult Endocrinology, The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, San Francisco, California
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
03. Oktober 2011 (online)

ABSTRACT

Ovarian autoimmunity is increasingly implicated in the etiology of primary ovarian insufficiency (POI), previously termed premature ovarian failure or premature menopause. Links to autoimmunity in human POI have long been noted due to the close association of POI with several autoimmune diseases and syndromes such as Addison's disease and Autoimmune polyglandular syndrome 1. However, diagnosis of autoimmune-mediated POI (aPOI) remains challenging because of the lack of sensitive or specific markers of disease. Autoimmunity can arise from the breakdown of immunological tolerance in several ways. How then may we discern what constitutes a relevant target and what represents a downstream phenomenon? The answer lies in the study of pathogenic mechanisms in translational models of disease. From examples in humans and mice, we see that ovarian autoimmunity likely arises from a limited number of antigens targeted in the ovary that are organ specific. These antigens may be conserved but not limited to those seen in animal models of autoimmune ovarian disease. Recent advances in these areas have begun to define the relevant antigens and mechanisms of immune tolerance breakdown in the ovary. Work in translational models continues to provide insight into mechanisms of disease pathogenesis that will allow more accurate diagnosis and, ultimately, improved interventions for women with aPOI.

REFERENCES

  • 1 Welt C K. Primary ovarian insufficiency: a more accurate term for premature ovarian failure.  Clin Endocrinol (Oxf). 2008;  68 (4) 499-509
  • 2 Nelson L M. Clinical practice. Primary ovarian insufficiency.  N Engl J Med. 2009;  360 (6) 606-614
  • 3 Shmerling R H, Delbanco T L. How useful is the rheumatoid factor? An analysis of sensitivity, specificity, and predictive value.  Arch Intern Med. 1992;  152 (12) 2417-2420
  • 4 Hoek A, Schoemaker J, Drexhage H A. Premature ovarian failure and ovarian autoimmunity.  Endocr Rev. 1997;  18 (1) 107-134
  • 5 Luborsky J. Ovarian autoimmune disease and ovarian autoantibodies.  J Womens Health Gend Based Med. 2002;  11 (7) 585-599
  • 6 Forges T, Monnier-Barbarino P, Faure G C, Béné M C. Autoimmunity and antigenic targets in ovarian pathology.  Hum Reprod Update. 2004;  10 (2) 163-175
  • 7 Monnier-Barbarino P, Forges T, Faure G C, Béné M C. Gonadal antibodies interfering with female reproduction.  Best Pract Res Clin Endocrinol Metab. 2005;  19 (1) 135-148
  • 8 Tuohy V K, Altuntas C Z. Autoimmunity and premature ovarian failure.  Curr Opin Obstet Gynecol. 2007;  19 (4) 366-369
  • 9 La Marca A, Brozzetti A, Sighinolfi G, Marzotti S, Volpe A, Falorni A. Primary ovarian insufficiency: autoimmune causes.  Curr Opin Obstet Gynecol. 2010;  22 (4) 277-282
  • 10 Goodnow C C, Sprent J, Fazekas de St Groth B, Vinuesa C G. Cellular and genetic mechanisms of self tolerance and autoimmunity.  Nature. 2005;  435 (7042) 590-597
  • 11 Walker L SK, Abbas A K. The enemy within: keeping self-reactive T cells at bay in the periphery.  Nat Rev Immunol. 2002;  2 (1) 11-19
  • 12 Vanderlugt C L, Miller S D. Epitope spreading in immune-mediated diseases: implications for immunotherapy.  Nat Rev Immunol. 2002;  2 (2) 85-95
  • 13 Witebsky E, Rose N R, Terplan K, Paine J R, Egan R W. Chronic thyroiditis and autoimmunization.  J Am Med Assoc. 1957;  164 (13) 1439-1447
  • 14 Rose N R, Bona C. Defining criteria for autoimmune diseases (Witebsky's postulates revisited).  Immunol Today. 1993;  14 (9) 426-430
  • 15 Skinner S M, Mills T, Kirchick H J, Dunbar B S. Immunization with zona pellucida proteins results in abnormal ovarian follicular differentiation and inhibition of gonadotropin-induced steroid secretion.  Endocrinology. 1984;  115 (6) 2418-2432
  • 16 Rhim S H, Millar S E, Robey F et al.. Autoimmune disease of the ovary induced by a ZP3 peptide from the mouse zona pellucida.  J Clin Invest. 1992;  89 (1) 28-35
  • 17 Lou Y H, McElveen F, Adams S, Tung K S. Altered target organ. A mechanism of postrecovery resistance to murine autoimmune oophoritis.  J Immunol. 1995;  155 (7) 3667-3673
  • 18 Lloyd M L, Papadimitriou J M, O'Leary S, Robertson S A, Shellam G R. Immunoglobulin to zona pellucida 3 mediates ovarian damage and infertility after contraceptive vaccination in mice.  J Autoimmun. 2010;  35 (1) 77-85
  • 19 O'Leary S, Lloyd M L, Shellam G R, Robertson S A. Immunization with recombinant murine cytomegalovirus expressing murine zona pellucida 3 causes permanent infertility in BALB/c mice due to follicle depletion and ovulation failure.  Biol Reprod. 2008;  79 (5) 849-860
  • 20 Lou Y H, Park K K, Agersborg S, Alard P, Tung K S. Retargeting T cell-mediated inflammation: a new perspective on autoantibody action.  J Immunol. 2000;  164 (10) 5251-5257
  • 21 Shivers C A, Dunbar B S. Autoantibodies to zona pellucida: a possible cause for infertility in women.  Science. 1977;  197 (4308) 1082-1084
  • 22 Irvine W J, Chan M M, Scarth L et al.. Immunological aspects of premature ovarian failure associated with idiopathic Addison's disease.  Lancet. 1968;  2 (7574) 883-887
  • 23 de Moraes Ruehsen M, Blizzard R M, Garcia-Bunuel R, Jones G S. Autoimmunity and ovarian failure.  Am J Obstet Gynecol. 1972;  112 (5) 693-703
  • 24 Anderson J R, Goudie R B, Gray K, Stuart-Smith D A. Immunological features of idiopathic Addison's disease: an antibody to cells producing steroid hormones.  Clin Exp Immunol. 1968;  3 (2) 107-117
  • 25 Sotsiou F, Bottazzo G F, Doniach D. Immunofluorescence studies on autoantibodies to steroid-producing cells, and to germline cells in endocrine disease and infertility.  Clin Exp Immunol. 1980;  39 (1) 97-111
  • 26 Falorni A, Laureti S, Candeloro P et al.. Steroid-cell autoantibodies are preferentially expressed in women with premature ovarian failure who have adrenal autoimmunity.  Fertil Steril. 2002;  78 (2) 270-279
  • 27 Dal Pra C, Chen S, Furmaniak J et al.. Autoantibodies to steroidogenic enzymes in patients with premature ovarian failure with and without Addison's disease.  Eur J Endocrinol. 2003;  148 (5) 565-570
  • 28 Betterle C, Coco G, Zanchetta R. Adrenal cortex autoantibodies in subjects with normal adrenal function.  Best Pract Res Clin Endocrinol Metab. 2005;  19 (1) 85-99
  • 29 Bakalov V K, Anasti J N, Calis K A et al.. Autoimmune oophoritis as a mechanism of follicular dysfunction in women with 46,XX spontaneous premature ovarian failure.  Fertil Steril. 2005;  84 (4) 958-965
  • 30 Winqvist O, Gebre-Medhin G, Gustafsson J et al.. Identification of the main gonadal autoantigens in patients with adrenal insufficiency and associated ovarian failure.  J Clin Endocrinol Metab. 1995;  80 (5) 1717-1723
  • 31 Baumann-Antczak A, Wedlock N, Bednarek J et al.. Autoimmune Addison's disease and 21-hydroxylase.  Lancet. 1992;  340 (8816) 429-430
  • 32 Falorni A, Nikoshkov A, Laureti S et al.. High diagnostic accuracy for idiopathic Addison's disease with a sensitive radiobinding assay for autoantibodies against recombinant human 21-hydroxylase.  J Clin Endocrinol Metab. 1995;  80 (9) 2752-2755
  • 33 Betterle C, Rossi A, Dalla Pria S et al.. Premature ovarian failure: autoimmunity and natural history.  Clin Endocrinol (Oxf). 1993;  39 (1) 35-43
  • 34 Betterle C, Dal Pra C, Mantero F, Zanchetta R. Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction.  Endocr Rev. 2002;  23 (3) 327-364
  • 35 La Marca A, Marzotti S, Brozzetti A Italian Addison Network et al. Primary ovarian insufficiency due to steroidogenic cell autoimmunity is associated with a preserved pool of functioning follicles.  J Clin Endocrinol Metab. 2009;  94 (10) 3816-3823
  • 36 Chen S, Sawicka J, Betterle C et al.. Autoantibodies to steroidogenic enzymes in autoimmune polyglandular syndrome, Addison's disease, and premature ovarian failure.  J Clin Endocrinol Metab. 1996;  81 (5) 1871-1876
  • 37 Brozzetti A, Marzotti S, La Torre D Italian Addison Network et al. Autoantibody responses in autoimmune ovarian insufficiency and in Addison's disease are IgG1 dominated and suggest a predominant, but not exclusive, Th1 type of response.  Eur J Endocrinol. 2010;  163 (2) 309-317
  • 38 Buckler H M, Evans C A, Mamtora H, Burger H G, Anderson D C. Gonadotropin, steroid, and inhibin levels in women with incipient ovarian failure during anovulatory and ovulatory rebound cycles.  J Clin Endocrinol Metab. 1991;  72 (1) 116-124
  • 39 Petraglia F, Hartmann B, Luisi S et al.. Low levels of serum inhibin A and inhibin B in women with hypergonadotropic amenorrhea and evidence of high levels of activin A in women with hypothalamic amenorrhea.  Fertil Steril. 1998;  70 (5) 907-912
  • 40 Welt C K, Falorni A, Taylor A E, Martin K A, Hall J E. Selective theca cell dysfunction in autoimmune oophoritis results in multifollicular development, decreased estradiol, and elevated inhibin B levels.  J Clin Endocrinol Metab. 2005;  90 (5) 3069-3076
  • 41 Tsigkou A, Marzotti S, Borges L et al.. High serum inhibin concentration discriminates autoimmune oophoritis from other forms of primary ovarian insufficiency.  J Clin Endocrinol Metab. 2008;  93 (4) 1263-1269
  • 42 Pires E S, Meherji P K, Vaidya R R, Parikh F R, Ghosalkar M N, Khole V V. Specific and sensitive immunoassays detect multiple anti-ovarian antibodies in women with infertility.  J Histochem Cytochem. 2007;  55 (12) 1181-1190
  • 43 Kojima A, Tanaka-Kojima Y, Sakakura T, Nishizuka Y. Spontaneous development of autoimmune thyroiditis in neonatally thymectomized mice.  Lab Invest. 1976;  34 (6) 550-557
  • 44 Taguchi O, Nishizuka Y, Sakakura T, Kojima A. Autoimmune oophoritis in thymectomized mice: detection of circulating antibodies against oocytes.  Clin Exp Immunol. 1980;  40 (3) 540-553
  • 45 Samy E T, Parker L A, Sharp C P, Tung K S. Continuous control of autoimmune disease by antigen-dependent polyclonal CD4 + CD25 + regulatory T cells in the regional lymph node.  J Exp Med. 2005;  202 (6) 771-781
  • 46 Tung K SK, Setiady Y Y, Samy E T, Lewis J, Teuscher C. Autoimmune ovarian disease in day 3-thymectomized mice: the neonatal time window, antigen specificity of disease suppression, and genetic control.  Curr Top Microbiol Immunol. 2005;  293 209-247
  • 47 Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases.  J Immunol. 1995;  155 (3) 1151-1164
  • 48 Suri-Payer E, Amar A Z, Thornton A M, Shevach E M. CD4 + CD25 + T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells.  J Immunol. 1998;  160 (3) 1212-1218
  • 49 Asano M, Toda M, Sakaguchi N, Sakaguchi S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation.  J Exp Med. 1996;  184 (2) 387-396
  • 50 Tong Z B, Nelson L M. A mouse gene encoding an oocyte antigen associated with autoimmune premature ovarian failure.  Endocrinology. 1999;  140 (8) 3720-3726
  • 51 Tong Z B, Gold L, Pfeifer K E et al.. Mater, a maternal effect gene required for early embryonic development in mice.  Nat Genet. 2000;  26 (3) 267-268
  • 52 Tong Z-B, Bondy C A, Zhou J, Nelson L M. A human homologue of mouse Mater, a maternal effect gene essential for early embryonic development.  Hum Reprod. 2002;  17 (4) 903-911
  • 53 Mueller D L. Mechanisms maintaining peripheral tolerance.  Nat Immunol. 2010;  11 (1) 21-27
  • 54 Otsuka N, Tong Z B, Vanevski K et al.. Autoimmune oophoritis with multiple molecular targets mitigated by transgenic expression of Mater.  Endocrinology. 2011;  152 (6) 2465-2473
  • 55 Perheentupa J. APS-I/APECED: the clinical disease and therapy.  Endocrinol Metab Clin North Am. 2002;  31 (2) 295-320 vi
  • 56 Husebye E S, Perheentupa J, Rautemaa R, Kämpe O. Clinical manifestations and management of patients with autoimmune polyendocrine syndrome type I.  J Intern Med. 2009;  265 (5) 514-529
  • 57 Mathis D, Benoist C. A decade of AIRE.  Nat Rev Immunol. 2007;  7 (8) 645-650
  • 58 Cheng M H, Shum A K, Anderson M S. What's new in the Aire?.  Trends Immunol. 2007;  28 (7) 321-327
  • 59 Anderson M S, Venanzi E S, Klein L et al.. Projection of an immunological self shadow within the thymus by the aire protein.  Science. 2002;  298 (5597) 1395-1401
  • 60 Ramsey C, Winqvist O, Puhakka L et al.. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response.  Hum Mol Genet. 2002;  11 (4) 397-409
  • 61 Kuroda N, Mitani T, Takeda N et al.. Development of autoimmunity against transcriptionally unrepressed target antigen in the thymus of Aire-deficient mice.  J Immunol. 2005;  174 (4) 1862-1870
  • 62 Jiang W, Anderson M S, Bronson R, Mathis D, Benoist C. Modifier loci condition autoimmunity provoked by Aire deficiency.  J Exp Med. 2005;  202 (6) 805-815
  • 63 Shum A K, DeVoss J, Tan C L et al.. Identification of an autoantigen demonstrates a link between interstitial lung disease and a defect in central tolerance.  Sci Transl Med. 2009;  1 (9) 9ra20
  • 64 Alimohammadi M, Björklund P, Hallgren A et al.. Autoimmune polyendocrine syndrome type 1 and NALP5, a parathyroid autoantigen.  N Engl J Med. 2008;  358 (10) 1018-1028
  • 65 Cameron I T, O'Shea F C, Rolland J M, Hughes E G, de Kretser D M, Healy D L. Occult ovarian failure: a syndrome of infertility, regular menses, and elevated follicle-stimulating hormone concentrations.  J Clin Endocrinol Metab. 1988;  67 (6) 1190-1194

Mickie H ChengM.D. Ph.D. 

Adjunct Assistant Professor, Division of Endocrinology, Department of Medicine, UCSF Diabetes Center

513 Parnassus Ave, HSW 1102 Box 0540, San Francisco, CA 94143

eMail: mickie.cheng@ucsf.edu