Exp Clin Endocrinol Diabetes 2011; 119(9): 559-564
DOI: 10.1055/s-0031-1279712
Article

© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Influence of Glycemic Status and Physical Fitness on Oxidative Stress and the Peroxiredoxin System in the Erythrocytes of Non-Insulin-Dependent Type 2 Diabetic Men

C. Brinkmann1 , E. Neumann1 , J. Blossfeld1 , S. Frese1 , P. Orthmann2 , G. Montiel3 , W. Bloch1 , K. Brixius1
  • 1Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
  • 2Institute of Physiology and Anatomy, German Sport University Cologne, Cologne, Germany
  • 3Department of Preventive and Rehabilitative Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
Further Information

Publication History

received 12.02.2011 first decision 06.04.2011

accepted 06.05.2011

Publication Date:
10 June 2011 (online)

Abstract

Oxidative stress plays a leading role in the progression of diabetic secondary complications, e. g., of cardio-vascular illnesses. Physical activity has been shown to delay and even prevent the progression of type 2 diabetes by improving the antioxidative capacity and thereby decreasing systemic oxidative stress. Peroxiredoxins (PRDX) are important antioxidative components that are highly abundant in erythrocytes. The present study examines the influence of glycemic control and physical fitness on oxidative stress and the peroxiredoxin system in the erythrocytes of non-insulin-dependent type 2 diabetic men (n=22, years=61±10) at rest. Oxidative stress was measured by immunohistochemical stainings for 8-iso-prostaglandin-F2α (8-Iso-PGF) and the overoxidized form of peroxiredoxins (PRDX-SO2–3). Peroxiredoxin isoforms PRDX1 and PRDX2 were also quantified immunohistochemically. Physical fitness was determined during the WHO-step test. Regression analyses showed a positive relationship between 8-Iso-PGF plotted against HbA1c (hyperbolic curve (y=a+b/x), R2=0.346, P=0.013), a positive relationship between 8-Iso-PGF plotted against fasting glucose (hyperbolic curve (y=a+b/x), R2=0.440, P=0.003), as well as positive relationships between PRDX2 plotted against VO2peak (S-curve (y=ea+b/x), R2=0.259, P=0.018) and between PRDX2 plotted against the workload corresponding to the 4 mmol/l blood lactate concentration (hyperbolic curve (y=a+b/x), R2=0.203, P=0.041). Further significant relationships were not found.

Conclusions: Poor glycemic control may increase oxidative stress in the erythrocytes of type 2 diabetic men. Good physical fitness seems to be associated with increased peroxiredoxin contents. Therefore, it can be speculated that physical training can contribute to the improvement of the erythrocyte peroxiredoxin system to counteract free radicals in type 2 diabetic patients.

References

  • 1 Alexander RW. Hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: a new perspective.  Hypertension. 1995;  25 155-161
  • 2 Arai K, Iizuka S, Tada Y. et al . Increase in glycosylated form of erythrocyte Cu-Zn-superoxide dismutase in diabetes and close association of the nonenzymatic glycosylation with the enzyme activity.  Biochim Biophys Acta. 1987;  924 292-296
  • 3 Araujo FB, Barbosa DS, Hsin CY. et al . Evaluation of oxidative stress in patients with hyperlipidemia.  Atherosclerosis. 1995;  117 61-71
  • 4 Ashton T, Rowlands CC, Jones E. et al . Electron spin resonance spectrometric detection of oxygen-centred radicals in human serum following exhaustive exercise.  Eur J Appl Physiol Occup Physiol. 1998;  77 498-502
  • 5 Atalay M, Laaksonen DE. Diabetes, oxidative stress and physical exercise.  J Sports Sci Med. 2002;  1 1-14
  • 6 Brownlee M. Biochemistry and molecular cell biology of diabetic complications.  Nature. 2001;  414 813-820
  • 7 Ceriello A, Mercuri F, Quagliaro L. et al . Detection of nitrotyrosine in the diabetic plasma: evidence of oxidative stress.  Diabetologia. 2001;  44 834-838
  • 8 Cho CS, Lee S, Lee GT. et al . Irreversible inactivation of glutathione peroxidase 1 and reversible inactivation of peroxiredoxin II by H2O2 in red blood cells.  Antioxid Redox Signal. 2010;  12 1235-1246
  • 9 Clodi M, Resl M, Stelzeneder D. et al . Interactions of glucose metabolism and chronic heart failure.  Exp Clin Endocrinol Diabetes. 2009;  117 99-106
  • 10 Cosentino F, Hishikawa K, Katusic ZS. et al . High glucose increases nitric oxide synthase expression and superoxide anion generation in human aortic endothelial cells.  Circulation.. 1997;  1 25-28
  • 11 Goodarzi MT, Varmaziar L, Navidi AA. et al . Study of oxidative stress in type 2 diabetic patients and its relationship with glycated hemoglobin.  Saudi Med J. 2008;  29 503-506
  • 12 Iborra RT, Ribeiro IC, Neves MQ. et al . Aerobic exercise training improves the role of high-density lipoprotein antioxidant and reduces plasma lipid peroxidation in type 2 diabetes mellitus.  Scand J Med Sci Sports. 2008;  18 742-750
  • 13 Ide T, Tsutsui H, Ohashi N. et al . Greater oxidative stress in healthy young men compared with premenopausal women.  Arterioscler Thromb Vasc Biol. 2002;  22 438-442
  • 14 Inoguchi T, Li P, Umeda F. et al . High glucose level and free fatty acid stimulate reactive oxygen protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells.  Diabetes. 2000;  49 1939-1945
  • 15 Julius U, Drel VR, Grässler J. et al . Nitrosylated proteins in monocytes as a new marker of oxidative-nitrosative stress in diabetic subjects with macroangiopathy.  Exp Clin Endocrinol Diabetes. 2009;  117 72-77
  • 16 Kaneto H, Katakami N, Matsuhisa M. et al . Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis.  Mediators Inflamm. 2010;  2010 453892
  • 17 Kotake M, Shinohara R, Kato K. et al . Reduction of activity, but no decrease in concentration, of erythrocyte Cu,Zn-superoxide dismutase by hyperglycaemia in diabetic patients.  Diabet Med. 1998;  5 668-671
  • 18 Laaksonen DE, Atalay M, Niskanen L. et al . Increased resting and exercise-induced oxidative stress in young IDDM men.  Diabetes Care. 1996;  19 569-574
  • 19 Low FM, Hampton MB, Winterbourn CC. Peroxiredoxin 2 and peroxide metabolism in the erythrocyte.  Antioxid Redox Signal. 2008;  10 1621-1630
  • 20 Maritim AC, Sanders RA, Watkins JB. Diabetes, oxidative stress, and antioxidants: A review.  J Biochem Mol Toxicol. 2003;  17 24-38
  • 21 Maxwell SR, Thomason H, Sandler D. et al . Poor glycaemic control is associated with reduced serum free radical scavenging (antioxidant) activity in non-insulin-dependent diabetes mellitus.  Ann Clin Biochem. 1997;  34 628-644
  • 22 Minetti M, Agati L, Malorni W. The microenvironment can shift erythrocytes from a friendly to a harmful behavior: pathogenetic implications for vascular diseases.  Cardiovasc Res. 2007;  75 21-28
  • 23 Misra HP, Fridovich I. The generation of superoxide radical during the autoxidation of hemoglobin.  J Biol Chem. 1972;  247 6960-6962
  • 24 Miyazaki H, Oh-ishi S, Ookawara T. et al . Strenuous endurance training in humans reduces oxidative stress following exhaustive exercise.  Eur J Appl Physiol. 2001;  84 1-6
  • 25 Ohno H, Yahata T, Sato Y. et al . Physical training and fasting erythrocyte activities of free radical scavenging enzyme systems in sedentary men.  Eur J Appl Physiol Occup Physiol. 1988;  57 173-176
  • 26 Osuntokl AA, Fasanmade OA, Adekola AO. et al . Lipid peroxidation and erythrocyte fragility in poorly controlled type 2 diabetes mellitus.  Nig Q J Hosp Med. 2007;  17 148-151
  • 27 Ouslimani N, Peynet J, Bonnefont-Rousselot D. et al . Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells.  Metabolism. 2005;  54 829-834
  • 28 Pandey KB, Mishra N, Rizvi SI. Protein oxidation biomarkers in plasma of type 2 diabetic patients.  Clin Biochem. 2010;  43 508-511
  • 29 Roberts CK, Vaziri ND, Barnard RJ. Effect of diet and exercise intervention on blood pressure, insulin, oxidative stress, and nitric oxide availability.  Circulation. 2002;  106 2530-2532
  • 30 Schmitt S, Linder M, Ständker L. et al . Identification of CML-modified proteins in hemofiltrate of diabetic patients by proteome analysis.  Exp Clin Endocrinol Diabetes. 2008;  116 26-34
  • 31 Suhr F, Porten S, Hertrich T. et al . Intensive exercise induces changes of endothelial nitric oxide synthase pattern in human erythrocytes.  Nitric Oxide. 2009;  20 95-103
  • 32 Venditti P, Di Meo S. Antioxidants, tissue damage, and endurance in trained and untrained young male rats.  Arch Biochem Biophys. 1996;  331 63-68
  • 33 Winterbourn CC, Stern A. Human red cells scavenge extracellular hydrogen peroxide and inhibit formation of hypochlorous acid and hydroxyl radical.  J Clin Invest. 1987;  80 1486-1491
  • 34 Wolff SP, Dean RT. Glucose autoxidation and protein modification.  Biochem J. 1987;  245 243-250

Correspondence

C. Brinkmann

Department of Molecular and

Cellular Sport Medicine

German Sport University

Cologne

Am Sportpark Müngersdorf 6

50933 Cologne

Germany

Phone: +49/221/4982 54 40

Fax: +49/221/4982 83 70

Email: ch.brinkmann@gmx.net

    >