Subscribe to RSS
DOI: 10.1055/s-0031-1277226
© Georg Thieme Verlag KG Stuttgart · New York
Aldosterone Perturbs Adiponectin and PAI-1 Expression and Secretion in 3T3-L1 Adipocytes
Publication History
received 20.02.2011
accepted 19.04.2011
Publication Date:
10 June 2011 (online)

Abstract
Aldosterone is considered as a new cardiovascular risk factor that plays an important role in metabolic syndrome; however, the underlying mechanism of these effects is not clear. Hypoadiponectinemia and elevated circulating concentration of plasminogen activator inhibitor-1 (PAI-1) are causally associated with obesity-related insulin resistance and cardiovascular disease. The aim of the present study is to investigate the effect of aldosterone on the production of adiponectin and PAI-1 in 3T3-L1 adipocytes. Northern and Western blot analyses revealed that aldosterone treatment inhibited adiponectin mRNA expression and secretion and simultaneously enhanced PAI-1 mRNA expression and secretion in a time- and dose-dependent manner. Rosiglitazone did not prevent aldosterone's effect on adiponectin or PAI-1 expression. In contrast, tumor necrosis factor (TNF)-α produced dramatic synergistic effects on adiponectin and PAI-1 expression when added together with aldosterone. Furthermore, the effects of aldosterone on adiponectin and PAI-1 expression appear to be mediated through glucocorticoid receptor (GR) but not mineralocorticoid receptor (MR). These results suggest that the effects of aldosterone on adiponectin and PAI-1 production are one of the underlying mechanisms linking it to insulin resistance, metabolic syndrome and cardiovascular disease.
Key words
adipose tissue - adipocytokines - insulin resistance - metabolic syndrome
References
- 1
Williams GH.
Aldosterone biosynthesis, regulation, and classical mechanism of action.
Heart Fail Rev.
2006;
10
7-13
MissingFormLabel
- 2
Krug AW, Ehrhart-Bornstein M.
Aldosterone and metabolic syndrome: is increased aldosterone in metabolic syndrome
patients an additional risk factor?.
Hypertension.
2008;
51
1252-1258
MissingFormLabel
- 3
Fallo F, Veglio F, Bertello C, Sonino N, Della Mea P, Ermani M, Rabbia F, Federspil G, Mulatero P.
Prevalence and characteristics of the metabolic syndrome in primary aldosteronism.
J Clin Endocrinol Metab.
2006;
91
454-459
MissingFormLabel
- 4
Connell JM, MacKenzie SM, Freel EM, Fraser R, Davies E.
A lifetime of aldosterone excess: long-term consequences of altered regulation of
aldosterone production for cardiovascular function.
Endocr Rev.
2008;
29
133-154
MissingFormLabel
- 5
Rossi G, Boscaro M, Ronconi V, Funder JW.
Aldosterone as a cardiovascular risk factor.
Trends Endocrinol Metab.
2005;
16
104-107
MissingFormLabel
- 6
Després JP, Lemieux I.
Abdominal obesity and metabolic syndrome.
Nature.
2006;
144
881-887
MissingFormLabel
- 7
Wada T, Ohshima S, Fujisawa E, Koya D, Tsuneki H, Sasaoka T.
Aldosterone inhibits insulin-induced glucose uptake by degradation of insulin receptor
substrate (IRS)1 and IRS2 via a reactive oxygen species-mediated pathway in 3T3-L1
adipocytes.
Endocrinology.
2009;
150
1662-1669
MissingFormLabel
- 8
Hirata A, Maeda N, Hiuge A, Hibuse T, Fujita K, Okada T.
Blockade of mineralocorticoid receptor reverses adipocyte dysfunction and insulin
resistance in obese mice.
Cardiovasc Res.
2009;
84
164-172
MissingFormLabel
- 9
Guo C, Ricchiuti V, Lian BQ, Yao TM, Coutinho P, Romero JR, Li J, Williams GH, Adler GK.
Mineralocorticoid receptor blockade reverses obesity-related changes in expression
of adiponectin, peroxisome proliferator-activated receptor-γ, and proinflammatory
adipokines.
Circulation.
2008;
117
2253-2261
MissingFormLabel
- 10
Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Kazuyuki T.
Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic
syndrome.
J Clin Invest.
2006;
116
1784-1792
MissingFormLabel
- 11
Alessi MC, Juhan-Vague I.
PAI-1 and the metabolic syndrome: links, causes, and consequences.
Arterioscler Thromb Vasc Biol.
2006;
26
2200-2207
MissingFormLabel
- 12
Li RY, Song HD, Shi WJ, Hu SM, Yang YS, Tang JF, Chen MD, Chen JL.
Galanin inhibits leptin expression and secretion in rat adipose tissue and 3T3-L1
adipocytes.
J Mol Endocrinol.
2004;
33
11-19
MissingFormLabel
- 13
Yuan GY, Chen X, Ma QY, Qiao J, Li RY, Li XS, Li SX, Tang JF, Zhou LB, Song HD, Chen MD.
C-reactive protein inhibits adiponectin gene expression and secretion in 3T3-L1 adipocytes.
J Endocrinol.
2007;
194
275-281
MissingFormLabel
- 14
Huang W, Xu C, Kahng KW, Noble NA, Border WA, Huang Y.
Aldosterone and TGF-β1 synergistically increase PAI-1 and decrease matrix degradation
in rat renal mesangial and fibroblast cells.
Am J Physiol Renal Physiol.
2008;
294
F1287-F1295
MissingFormLabel
- 15
Lundgren CH, Brown SL, Nordt TK, Sobel BE, Fujii S.
Elaboration of type-1 plasminogen activator inhibitor from adipocytes A potential
pathogenetic link between obesity and cardiovascular disease.
Circulation.
1996;
93
106-110
MissingFormLabel
- 16
Quinn CE, Hamilton PK, Lockhart CJ, McVeigh GE.
Thiazolidinediones: effects on insulin resistance and the cardiovascular system.
Br J Pharmacol.
2008;
153
636-645
MissingFormLabel
- 17
Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, Nagaretani H, Matsuda M, Komuro R, Ouchi N, Kuriyama H, Hotta K, Nakamura T, Shimomura L, Matsuzawa Y.
PPARgamma ligands increase expression and plasma concentrations of adiponectin, an
adipose-derived protein.
Diabetes.
2001;
50
2094-2099
MissingFormLabel
- 18
Hong HK, Cho YM, Park KH, Lee CT, Lee HK, Park KS.
Peroxisome proliferator-activated receptor gamma mediated inhibition of plasminogen
activator inhibitor type 1 production and proliferation of human umbilical vein endothelial
cells.
Diabetes Res Clin Pract.
2003;
62
1-8
MissingFormLabel
- 19
Cawthorn WP, Sethi JK.
TNF-α and adipocyte biology.
FEBS Lett.
2008;
582
117-131
MissingFormLabel
- 20
Lyon CJ, Hsueh WA.
Effect of plasminogen activator inhibitor-1 in diabetes mellitus and cardiovascular
disease.
Am J Med.
2003;
115
S62-S68
MissingFormLabel
- 21
Trujillo ME, Scherer PE.
Adiponectin-journey from an adipocyte secretory protein to biomarker of the metabolic
syndrome.
J Intern Med.
2005;
257
167-175
MissingFormLabel
- 22
Chow WS, Cheung BM, Tso AW, Xu A, Wat NM, Fong CH, Ong LH, Tam S, Tan KC, Janus ED, Lam TH, Lam KS.
Hypoadiponectinemia as a predictor for the development of hypertension: a 5-year prospective
study.
Hypertension.
2007;
49
1455-1461
MissingFormLabel
- 23
Maahs DM, Ogden LG, Kinney GL, Wadwa P, Snell-Bergeon JK, Dabelea D, Hokanson JE, Ehrlich J, Eckel RH, Rewers M.
Low plasma adiponectin levels predict progression of coronary artery calcification.
Circulation.
2005;
111
747-753
MissingFormLabel
- 24
Shimomura I, Funahashi T, Takahashi M, Maeda K, Kotani K, Nakamura T, Yamashita S, Miura M, Fukuda Y, Takemura K, Tokunaga K, Matsuzawa Y.
Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease
in obesity.
Nat Med.
1996;
2
800-803
MissingFormLabel
- 25
Chun TY, Pratt JH.
Aldosterone increases plasminogen activator inhibitor-1 synthesis in rat cardiomyocytes.
Mol Cell Endocrinol.
2005;
239
55-61
MissingFormLabel
- 26
Urbanet R, Pilon C, Calcagno A, Peschechera A, Hubert EL, Giacchetti G, Gomez-Sanchez C, Mulatero P, Toffanin M, Sonino N, Zennaro MC, Giorgino F, Vettor R, Fallo F.
Analysis of insulin sensitivity in adipose tissue of patients with primary aldosteronism.
J Clin Endocrinol Metab.
2010;
95
4037-4042
MissingFormLabel
- 27
He G, Pedersen SB, Bruun JM, Lihn AS, Richelsen B.
Metformin, but not thiazolidinediones, inhibits plasminogen activator inhibitor-1
production in human adipose tissue in vitro.
Horm Metab Res.
2003;
35
18-23
MissingFormLabel
- 28
Yamashita R, Kikuchi T, Mori Y, Aoki K, Kaburagi Y, Yasuda K, Sekihara H.
Aldosterone stimulates gene expression of hepatic gluconeogenic enzymes through the
glucocorticoid receptor in a manner independent of the protein kinase B cascade.
Endocr J.
2004;
51
243-251
MissingFormLabel
- 29
Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE, Evans RM.
Cloning of human mineralocorticoid receptor complementary DNA: structural and functional
kinship with the glucocorticoid receptor.
Science.
1987;
237
268-275
MissingFormLabel
- 30
Hoppmann J, Perwitz N, Meier B, Fasshauer M, Hadaschik D, Lehnert H, Klein J.
The balance between gluco- and mineralo-corticoid action critically determines inflammatory
adipocyte responses.
J Endocrinol.
2010;
204
153-164
MissingFormLabel
- 31
Lastra-Lastra G, Sowers JR, Restrepo-Erazo K, Manrique-Acevedo C, Lastra-González G.
Role of aldosterone and angiotension II in insulin resistance: an update.
Clin Endocrinol (Oxf).
2009;
71
1-6
MissingFormLabel
1 These authors contributed equally to this work.
Correspondence
H.-D. Song
M.-D. Chen
Ruijin Hospital
Shanghai Institute of
Endocrinology
State Key Laboratory of Medical
Genomics
Molecular Medicine Center
Shanghai Jiao Tong University
(SJTU) School of Medicine
Ruijin Road 2
Shanghai 200025
P. R. China
Phone: + 86/21/6431 55 87
Fax: + 86/21/6467 36 39
Email: huaidong_s1966@163.com
Email: mingdaochensh@yahoo.com