Subscribe to RSS
DOI: 10.1055/s-0031-1277139
© J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York
The Functional Muscle-Bone Unit in Obese Children – Altered Bone Structure Leads to Normal Strength Strain Index
Publication History
received 13.07.2010
first decision 11.02.2011
accepted 04.04.2011
Publication Date:
06 May 2011 (online)

Abstract
Obese children have a twofold increased risk of fracture of the forearm compared to non-obese children.
Objective: To investigate bone strength and bone structure of the forearm, and the relationship between muscle and bone in obese children.
Methods: The study-group consisted of 84 (40 female) overweight children (mean (SD)) age 11.8 (3.2) years, BMI 29.0 (5.1) kg/m2). Bone geometry and strength were measured at the proximal radius of the non-dominant forearm (65% measurement site) by means of pQCT (XCT 2000). Bone mineral density and lean mass of the total body was determined by means of DXA (Lunar, DPXL/PED). Results were compared to reference values by calculating age (SDSCA) and height-age (SDSHA) dependent standard deviation scores (SDS).
Results: Cortical density, −1.11 (1.74) SDSHA, −0.45 (1.52) SDSCA; cortical thickness, −1.46 (1.33) SDSHA, −1.01 (1.46) SDSCA; cortical area, −0.42 (1.31) SDSHA, 0.26 (1.58) SDSCA; total bone area +2.21 (1.47) SDSHA, 2.91 (1.80) SDSCA, marrow area +3.12 (2.29) SDSHA, 3.37 (2.38) SDSCA; strength strain index +0.10 (1.10) SDSHA, 0.95 (1.57) SDSCA. These changes in bone structure were independent from pubertal stage. Measurements revealed correlations between muscle area and SSI (R2=0.67, p<0.001), and muscle mass and bone mineral content (DXA; R2=0.81, p<0.001).
Conclusion: Low cortical density, normal cortical area and increased total bone area led to a normal strength strain index adjusted both for height and for age. We assume that this normal bone strength is not appropriate for the higher kinetic energy of impact in case of a fall in overweight children.
Key words
obesity - children - functional muscle-bone unit - DXA - pQCT
References
- 1
Aksglaede L, Juul A, Olsen LW. et al .
Age at Puberty and the Emerging Obesity Epidemic.
PLoS ONE.
2009;
4
e8450
MissingFormLabel
- 2
Bös K, Opper E, Woll A.
Fitness in der Grundschule.
Haltung und Bewegung.
2002;
22
5-25
MissingFormLabel
- 3
Cole TJ, Freeman JV, Preece MA.
Body mass index reference curves for the UK, 1990.
Arch Dis Child.
1995;
73
25-29
MissingFormLabel
- 4
Davidson PL, Goulding A, Chalmers DJ.
Biomechanical analysis of arm fracture in obese boys.
J Paed Child Health.
2003;
39
657-664
MissingFormLabel
- 5
De Schepper J, Van den Broeck M, Jonckheer MH.
Study of lumbar spine bone mineral density in obese children.
Acta Paediatr.
1995;
84
313-315
MissingFormLabel
- 6
Fischer S, Milinarsky A, Giadrosich V. et al .
X-ray absorptiometry of bone in obese and eutrophic children from Valparaiso, Chile.
J Rheumatol.
2000;
27
1294-1296
MissingFormLabel
- 7
Frost HM, Schönau E.
The “muscle-bone unit” in children and adolescents: a 2000 overview.
J Pediatr Endocrinol Metab.
2000;
13
571-590
MissingFormLabel
- 8
Frost HM.
Changing concepts in skeletal physiology: Wolff's law, the mechanostat, and the “Utah
paradigm”.
Am J Hum Biol.
1998;
10
599-505
MissingFormLabel
- 9
Hasanoglu A, Bideci A, Cinaz P. et al .
Bone mineral density in childhood obesity.
J Pediatr Endocrinol Metab.
2000;
3
307-311
MissingFormLabel
- 10
Hasegawa Y, Schneider P, Reiners C. et al .
Estimation of the architectural properties of cortical bone using peripheral quantitative
computed tomography.
Osteoporos Int.
2000;
11
36-42
MissingFormLabel
- 11
Johnson J, Dawson-Hughes B.
Precision and stability of dual-energy X-ray absorptiometry measurements.
Calcif Tissue Int.
1991;
49
174-178
MissingFormLabel
- 12
Klein KO, Larmore KA, de Lancey E. et al .
Effect of obesity on estradiol level, and its relationship to leptin, bone maturation,
and bone mineral density in children.
J Clin Endocrinol Metab.
1998;
83
3469-3475
MissingFormLabel
- 13
Kurth BM, Schaffrath R.
Die Verbreitung von Übergewicht und Adipositas bei Kindern und Jugendlichen.
Bundesgesundheitsbl – Gesundheitsforschung – Gesundheitsschutz.
2007;
50
736-743
MissingFormLabel
- 14
Leonard MB, Shults J, Wilson BA. et al .
Obesity during childhood and adolescence augments bone mass and bone dimensions.
Amer J Clin Nutr.
2004;
80
514-523
MissingFormLabel
- 15
McCormick DP, Ponder SW, Fawcett HD. et al .
Spinal bone mineral density in 335 normal and obese children and adolescents: evidence
for ethnic and sex differences.
J Bone Miner Res.
1991;
6
507-513
MissingFormLabel
- 16
Morano M, Colella D, Robazza C. et al .
Physical self-perception and motor performance in normal-weight, overweight and obese
children.
Scand J Med Sci Sports.
2010 Jan 31;
MissingFormLabel
- 17
Pintauro SJ, Nagy TR, Duthie CM. et al .
Cross-calibration of fat and lean measurements by dual-energy X-ray absorptiometry
to pig carcass analysis in the pediatric body weight range.
Am J Clin Nutr.
1996;
63
293-298
MissingFormLabel
- 18
Popkin BM, Gordon-Larsen P.
The nutrition transition: worldwide obesity dynamics and their determinants.
Int J Oes Relat Metab Disord.
2004;
28
(S 03)
2-9
MissingFormLabel
- 19
Prader A, Largo RH, Molinari L. et al .
Physical growth of Swiss children from birth to 20 years of age. First Zurich longitudinal
study of growth and development.
Helv Paediatr Acta Suppl.
1989;
52
1-125
MissingFormLabel
- 20
Rauch F, Neu CM, Wassmer G. et al .
Muscle analysis by measurement of maximal isometric grip force: new reference data
and clinical applications in pediatrics.
Pediatr Res.
2002;
51
(4)
505-510
MissingFormLabel
- 21
Sayers A, Tobias JH.
Fat mass exerts a greater effect on cortical bone mass in girls than boys.
J Clin Endocrinol Metab.
2010;
95
699-706
MissingFormLabel
- 22
Schönau E, Neu CM, Beck B. et al .
Bone mineral content per muscle cross-sectional area as an index of the functional
muscle-bone unit.
J Bone Miner Res.
2002;
17
1095-1101
MissingFormLabel
- 23
Schönau E.
Problems of bone analysis in childhood and adolescence.
Pediatr Nephrol.
1998;
12
420-429
MissingFormLabel
- 24
Schönau E, Neu CM, Rauch F. et al .
The development of bone strength at the proximal radius during childhood and adolescence.
J Clin Endocrinol Metab.
2001;
86
613-618
MissingFormLabel
- 25
Schweizer R, Martin DD, Haase M. et al .
Similar effects of long-term exogenous growth hormone (GH) on bone and muscle parameters:
a pQCT study of GH-deficient and small-for-gestational-age (SGA) children.
Bone.
2007;
41
875-881
MissingFormLabel
- 26
Schweizer R, Martin DD, Schwarze CP. et al .
Cortical bone density is normal in prepubertal children with growth hormone (GH) deficiency,
but initially decreases during GH replacement due to early bone remodeling.
J Clin Endocrinol Metab.
2003;
88
5266-5272
MissingFormLabel
- 27
Tanner JM.
Normal growth and techniques of growth assessment.
Clin Endocrinol Metab.
1986;
15
411-451
MissingFormLabel
- 28
Troiano RP, Briefel RR, Carroll MD. et al .
Energy and fat intakes of children and adolescents in the United States: data from
the national health and nutrition examination surveys.
Am J Clin Nutr.
2000;
72
1343-1353
MissingFormLabel
- 29
Van der Sluis I, de Ridder MA, Boot AM. et al .
Reference data for bone density and body composition measured with dual energy X ray
absorptiometry in white children and young adults.
Arch Dis Child.
2002;
87
341-347
MissingFormLabel
- 30
Wetzsteon RJ, Petit MA, Macdonald HM. et al .
Bone structure and volumetric BMD in overweight children: a longitudinal study.
J Bone Mineral Res.
2008;
23
1946-1953
MissingFormLabel
- 31
Wosje KS, Knipstein BL, Kalkwarf HJ.
Measurement error of DXA: Interpretation of fat and lean mass changes in obese and
non-obese children.
J Clin Densitom.
2006;
9
(3)
335-340
MissingFormLabel
- 32
Wey HE, Binkley TL, Beare TM. et al .
Cross-sectional versus longitudinal associations of lean and fat mass with pQCT bone
outcomes in children.
J Clin Endocrinol Metab.
2011;
96
106-114
MissingFormLabel
APPENDIX
DISKUS-Study Group
Perikles Simon, Gutenberg University, Sports Medicine, Mainz, Germany;
Andre Lacroix, Jochen Hansel, Andreas Nieß, University Hospital for Internal Medicine, Sports Medicine, Tuebingen, Germany; Katrin Giel, Markus Schrauth †, Paul Enck, Stephan Zipfel, University Hospital for Internal Medicine, Department of Psychosomatic Medicine and Psychotherapy, Tuebingen, Germany; Jürgen Machmann, Fabian Springer, Verena Ballweg, Fritz Schick, Eberhard-Karls-University, Section on Experimental Radiology, Department of Diagnostic Radiology, Tuebingen, Germany; Michael S. Urschitz, Department of Neonatology, University Children's Hospital, Tuebingen, Germany; Andreas Neu, Hans Peter Haber, Department of Paediatrics, University Children's Hospital, Tuebingen, Germany; Huu Phuc Nguyen, Eberhard-Karls-University, Department of Medical Genetics, Tuebingen, Germany.
Correspondence
Dr. R. Schweizer
Pediatric Endocrinology and
Diabetology
University Children's
Hospital
Hoppe-Seyler-Straße 1
D-72076 Tuebingen
Germany
Phone: +49/7071/29 83781
Fax: +49/7071/29 4157
Email: roland.schweizer@gmx.de