RSS-Feed abonnieren
DOI: 10.1055/s-0031-1273425
© Georg Thieme Verlag KG Stuttgart · New York
Cell Volume, the Serum and Glucocorticoid Inducible Kinase 1 and the Liver
Zellvolumen, die serum- und glukokortikoidinduzierte Kinase und die LeberPublikationsverlauf
manuscript received: 3.3.2011
manuscript accepted: 11.5.2011
Publikationsdatum:
01. Juni 2011 (online)

Zusammenfassung
Zellschwellung wird durch Freisetzung von Ionen (K+-Kanal und/oder Anionen-Kanal-Aktivierung, KCl-Kotransport, gleichzeitige Aktivierung von K+/H+-Austauscher und Cl–/HCO3 –-Austauscher) kompensiert, während Zellschrumpfung durch regulatorische Ionenaufnahme ausgeglichen wird (Aktivierung von Na+, K+, 2Cl–-Kotransport, Na+/H+-Austausch bei gleichzeitigem Cl–/HCO3 –-Austausch und Na+-Kanälen). Zusätzlich werden durch Zellschrumpfung organische Osmolyte akkumuliert (z. B.: Myoinositol, Betain, Phosphorylcholin, Taurin). Das Zellvolumen kann den Stoffwechsel stark beeinflussen. Zellschrumpfung aktiviert, Zellschwellung inhibiert die Proteolyse und Glykogenolyse. Außerdem beeinflusst das Zellvolumen die Bildung von Oxidanzien. Des Weiteren spielen diese regulatorischen Mechanismen bei Fibrosierung einzelner Organe eine zentrale Rolle. Ein Signalelement der Zellvolumenregulation ist die Serum- und Glukokortikoidinduzierte Kinase 1 (SGK1), die in der Leber exprimiert und bei Zellschrumpfung hochreguliert wird. Sie stimuliert eine Vielzahl von Ionenkanälen und Transportern, wie bspw. den Na+, K+, 2Cl–-Kotransporter und Na+/H+-Austauscher, und kann zur Fibrosierung beitragen. Zusammenfassend nimmt die SGK1 eine bedeutsame Rolle bei der Leberzellvolumenregulation und konsekutiv dem Leberstoffwechsel ein.
Abstract
In virtually all cells including hepatocytes cell volume regulation is accomplished during cell swelling by cellular ion release (activation of K+ channels and/or anion channels, KCl-cotransport, parallel activation of K+/H+ exchange and Cl–/HCO3 – exchange) and following cell shrinkage by cellular ion uptake (activation of Na+, K+, 2Cl– cotransport, Na+/H+ exchange in parallel to Cl–/HCO3 – exchange and Na+-channels). Moreover, cell shrinkage triggers the cellular accumulation of organic osmolytes (e. g., myoinositol, betaine, phosphorylcholine, taurine). Cell volume is a powerful regulator of hepatic metabolism. Cell shrinkage stimulates and cell swelling inhibits proteolysis and glycogenolysis. Moreover, cell volume influences the generation of and sensitivity to oxidants. Cell volume regulatory mechanisms furthermore do play a role in fibrosing disease. Kinases stimulating cell volume regulatory mechanisms include the serum and glucocorticoid inducible kinase SGK1, which is expressed in the liver, is genomically up-regulated by cell shrinkage, stimulates a wide variety of channels and transporters including Na+, K+, 2Cl– cotransport and Na+/H+ exchange and is known to participate in the stimulation of fibrosis. Accordingly, excessive SGK1 expression is observed in liver cirrhosis. The case is made that SGK1 participates in the regulation of liver cell volume and thus in the regulation of hepatic metabolism.
Schlüsselwörter
Leber - Zellvolumen - Stoffwechsel
Key words
liver - cell volume - metabolism
References
- 1
Lang F, Busch G L, Ritter M et al.
Functional significance of cell volume regulatory mechanisms.
Physiol Rev.
1998;
78
247-306
MissingFormLabel
- 2
King L S, Kozono D, Agre P.
From structure to disease: the evolving tale of aquaporin biology.
Nat Rev Mol Cell Biol.
2004;
5
687-698
MissingFormLabel
- 3
Haussinger D.
Osmosensing and osmosignaling in the liver.
Wien Med Wochenschr.
2008;
158
549-552
MissingFormLabel
- 4
Hoffmann E K, Lambert I H, Pedersen S F.
Physiology of cell volume regulation in vertebrates.
Physiol Rev.
2009;
89
193-277
MissingFormLabel
- 5
Lang F, Foller M, Lang K et al.
Cell volume regulatory ion channels in cell proliferation and cell death.
Methods Enzymol.
2007;
428
209-225
MissingFormLabel
- 6
Pasantes-Morales H, Cruz-Rangel S.
Brain volume regulation: osmolytes and aquaporin perspectives.
Neuroscience.
2010;
168
871-884
MissingFormLabel
- 7
Usher-Smith J A, Huang C L, Fraser J A.
Control of cell volume in skeletal muscle.
Biol Rev Camb Philos Soc.
2009;
84
143-159
MissingFormLabel
- 8
Burg M B, Ferraris J D, Dmitrieva N I.
Cellular response to hyperosmotic stresses.
Physiol Rev.
2007;
87
1441-1474
MissingFormLabel
- 9
Beck F X, Neuhofer W.
Cell volume regulation in the renal papilla.
Contrib Nephrol.
2006;
152
181-197
MissingFormLabel
- 10
Haussinger D, Lang F.
Cell volume in the regulation of hepatic function: a mechanism for metabolic control.
Biochim Biophys Acta.
1991;
1071
331-350
MissingFormLabel
- 11
Lang F, Stehle T, Haussinger D.
Water, K + , H + , lactate and glucose fluxes during cell volume regulation in perfused
rat liver.
Pflugers Arch.
1989;
413
209-216
MissingFormLabel
- 12
Wehner F.
Cell volume-regulated cation channels.
Contrib Nephrol.
2006;
152
25-53
MissingFormLabel
- 13
Graf J, Haussinger D.
Ion transport in hepatocytes: mechanisms and correlations to cell volume, hormone
actions and metabolism.
J Hepatol.
1996;
24 (Suppl 1)
53-77
MissingFormLabel
- 14
Okada Y.
Cell volume-sensitive chloride channels: phenotypic properties and molecular identity.
Contrib Nephrol.
2006;
152
9-24
MissingFormLabel
- 15
Boini K M, Graf D, Hennige A M et al.
Enhanced insulin sensitivity of gene-targeted mice lacking functional KCNQ1.
Am J Physiol Regul Integr Comp Physiol.
2009;
296
R1695-R1701
MissingFormLabel
- 16
Jakab M, Grundbichler M, Benicky J et al.
Glucose induces anion conductance and cytosol-to-membrane transposition of ICln in
INS-1E rat insulinoma cells.
Cell Physiol Biochem.
2006;
18
21-34
MissingFormLabel
- 17
Wettstein M, Peters-Regehr T, Kubitz R et al.
Release of osmolytes induced by phagocytosis and hormones in rat liver.
Am J Physiol Gastrointest Liver Physiol.
2000;
278
G227-G233
MissingFormLabel
- 18
Wehner F, Olsen H, Tinel H et al.
Cell volume regulation: osmolytes, osmolyte transport, and signal transduction.
Rev Physiol Biochem Pharmacol.
2003;
148
1-80
MissingFormLabel
- 19
Dahl vom S, Haussinger D.
Cell hydration and proteolysis control in liver.
Biochem J.
1995;
312 (Pt 3)
988-989
MissingFormLabel
- 20
Dahl vom S, Haussinger D.
Nutritional state and the swelling-induced inhibition of proteolysis in perfused rat
liver.
J Nutr.
1996;
126
395-402
MissingFormLabel
- 21
Dahl vom S, Dombrowski F, Schmitt M et al.
Cell hydration controls autophagosome formation in rat liver in a microtubule-dependent
way downstream from p38 MAPK activation.
Biochem J.
2001;
354
31-36
MissingFormLabel
- 22
Stoll B, Gerok W, Lang F et al.
Liver cell volume and protein synthesis.
Biochem J.
1992;
287 (Pt 1)
217-222
MissingFormLabel
- 23
Waldegger S, Busch G L, Kaba N K et al.
Effect of cellular hydration on protein metabolism.
Miner Electrolyte Metab.
1997;
23
201-205
MissingFormLabel
- 24
Haussinger D, Gorg B.
Interaction of oxidative stress, astrocyte swelling and cerebral ammonia toxicity.
Curr Opin Clin Nutr Metab Care.
2010;
13
87-92
MissingFormLabel
- 25
Haussinger D, Lang F.
Cell volume and hormone action.
Trends Pharmacol Sci.
1992;
13
371-373
MissingFormLabel
- 26
Lang F, Ritter M, Volkl H et al.
The biological significance of cell volume.
Ren Physiol Biochem.
1993;
16
48-65
MissingFormLabel
- 27
Hallbrucker C, Dahl vom S, Lang F et al.
Modification of liver cell volume by insulin and glucagon.
Pflugers Arch.
1991;
418
519-521
MissingFormLabel
- 28
Schliess F, Haussinger D.
Cell hydration and insulin signalling.
Cell Physiol Biochem.
2000;
10
403-408
MissingFormLabel
- 29
Dahl vom S, Hallbrucker C, Lang F et al.
Regulation of liver cell volume and proteolysis by glucagon and insulin.
Biochem J.
1991;
278 (Pt 3)
771-777
MissingFormLabel
- 30
Dahl vom S, Hallbrucker C, Lang F et al.
Regulation of cell volume in the perfused rat liver by hormones.
Biochem J.
1991;
280 (Pt 1)
105-109
MissingFormLabel
- 31
Dahl vom S, Haussinger D.
Bumetanide-sensitive cell swelling mediates the inhibitory effect of ethanol on proteolysis
in rat liver.
Gastroenterology.
1998;
114
1046-1053
MissingFormLabel
- 32
Fisher S K, Heacock A M, Keep R F et al.
Receptor regulation of osmolyte homeostasis in neural cells.
J Physiol.
2010;
588
3355-3364
MissingFormLabel
- 33
Haussinger D, Hallbrucker C, Saha N et al.
Cell volume and bile acid excretion.
Biochem J.
1992;
288 (Pt 2)
681-689
MissingFormLabel
- 34
Hallbrucker C, Ritter M, Lang F et al.
Hydroperoxide metabolism in rat liver. K + channel activation, cell volume changes
and eicosanoid formation.
Eur J Biochem.
1993;
211
449-458
MissingFormLabel
- 35
Heins J, Zwingmann C.
Organic osmolytes in hyponatremia and ammonia toxicity.
Metab Brain Dis.
2010;
25
81-89
MissingFormLabel
- 36
Lang F, Bohmer C, Palmada M et al.
(Patho)physiological significance of the serum- and glucocorticoid-inducible kinase
isoforms.
Physiol Rev.
2006;
86
1151-1178
MissingFormLabel
- 37
Feng Y, Wang Q, Wang Y et al.
SGK1-mediated fibronectin formation in diabetic nephropathy.
Cell Physiol Biochem.
2005;
16
237-244
MissingFormLabel
- 38
Haussinger D, Reinehr R, Schliess F.
The hepatocyte integrin system and cell volume sensing.
Acta Physiol (Oxf).
2006;
187
249-255
MissingFormLabel
- 39
Schliess F, Reissmann R, Reinehr R et al.
Involvement of integrins and Src in insulin signaling toward autophagic proteolysis
in rat liver.
J Biol Chem.
2004;
279
21 294-21 301
MissingFormLabel
- 40
Schliess F, Haussinger D.
Osmosensing and signaling in the regulation of liver function.
Contrib Nephrol.
2006;
152
198-209
MissingFormLabel
- 41
Schliess F, Haussinger D.
Osmosensing by integrins in rat liver.
Methods Enzymol.
2007;
428
129-144
MissingFormLabel
- 42
Theodoropoulos P A, Stournaras C, Stoll B et al.
Hepatocyte swelling leads to rapid decrease of the G-/total actin ratio and increases
actin mRNA levels.
FEBS Lett.
1992;
311
241-245
MissingFormLabel
- 43
Tamma G, Procino G, Strafino A et al.
Hypotonicity induces aquaporin-2 internalization and cytosol-to-membrane translocation
of ICln in renal cells.
Endocrinology.
2007;
148
1118-1130
MissingFormLabel
- 44
Dahl vom S, Stoll B, Gerok W et al.
Inhibition of proteolysis by cell swelling in the liver requires intact microtubular
structures.
Biochem J.
1995;
308 (Pt 2)
529-536
MissingFormLabel
- 45
Schliess F, Schreiber R, Haussinger D.
Activation of extracellular signal-regulated kinases Erk-1 and Erk-2 by cell swelling
in H 4IIE hepatoma cells.
Biochem J.
1995;
309 (Pt 1)
13-17
MissingFormLabel
- 46
Delpire E, Austin T M.
Kinase regulation of Na-K-2Cl cotransport in primary afferent neurones.
J Physiol.
2010;
588
3365-3373
MissingFormLabel
- 47
Zagorska A, Pozo-Guisado E, Boudeau J et al.
Regulation of activity and localization of the WNK1 protein kinase by hyperosmotic
stress.
J Cell Biol.
2007;
176
89-100
MissingFormLabel
- 48
Delpire E, Gagnon K B.
SPAK and OSR1: STE20 kinases involved in the regulation of ion homoeostasis and volume
control in mammalian cells.
Biochem J.
2008;
409
321-331
MissingFormLabel
- 49
Peng J B, Warnock D G.
WNK4-mediated regulation of renal ion transport proteins.
Am J Physiol Renal Physiol.
2007;
293
F961-F973
MissingFormLabel
- 50
Haussinger D, Schliess F, Dombrowski F et al.
Involvement of p38 MAPK in the regulation of proteolysis by liver cell hydration.
Gastroenterology.
1999;
116
921-935
MissingFormLabel
- 51
Schliess F, Richter L, Dahl vom S et al.
Cell hydration and mTOR-dependent signalling.
Acta Physiol (Oxf).
2006;
187
223-229
MissingFormLabel
- 52
Lang P A, Kasinathan R S, Brand V B et al.
Accelerated clearance of Plasmodium-infected erythrocytes in sickle cell trait and
annexin-A7 deficiency.
Cell Physiol Biochem.
2009;
24
415-428
MissingFormLabel
- 53
Kucherenko Y, Browning J, Tattersall A et al.
Effect of peroxynitrite on passive K + transport in human red blood cells.
Cell Physiol Biochem.
2005;
15
271-280
MissingFormLabel
- 54
Janmey P A, Lindberg U.
Cytoskeletal regulation: rich in lipids.
Nat Rev Mol Cell Biol.
2004;
5
658-666
MissingFormLabel
- 55
Gamper N, Shapiro M S.
Target-specific PIP(2) signalling: how might it work?.
J Physiol.
2007;
582
967-975
MissingFormLabel
- 56
Ferraris J D, Burg M B.
Tonicity-dependent regulation of osmoprotective genes in Mammalian cells.
Contrib Nephrol.
2006;
152
125-141
MissingFormLabel
- 57
Lang F, Strutz-Seebohm N, Seebohm G et al.
Significance of SGK1 in the regulation of neuronal function.
J Physiol.
2010;
588
3349-3354
MissingFormLabel
- 58
Rusai K, Wagner B, Roos M et al.
The serum and glucocorticoid-regulated kinase 1 in hypoxic renal injury.
Cell Physiol Biochem.
2009;
24
577-584
MissingFormLabel
- 59
Wang K, Gu S, Nasir O et al.
SGK1-dependent intestinal tumor growth in APC-deficient mice.
Cell Physiol Biochem.
2010;
25
271-278
MissingFormLabel
- 60
Lang F, Artunc F, Vallon V.
The physiological impact of the serum and glucocorticoid-inducible kinase SGK1.
Curr Opin Nephrol Hypertens.
2009;
18
439-448
MissingFormLabel
- 61
Rotte A, Mack A F, Bhandaru M et al.
Pioglitazone induced gastric acid secretion.
Cell Physiol Biochem.
2009;
24
193-200
MissingFormLabel
- 62
Rotte A, Bhandaru M, Foller M et al.
APC sensitive gastric acid secretion.
Cell Physiol Biochem.
2009;
23
133-142
MissingFormLabel
- 63
Sobiesiak M, Shumilina E, Lam R S et al.
Impaired mast cell activation in gene-targeted mice lacking the serum- and glucocorticoid-inducible
kinase SGK1.
J Immunol.
2009;
183
4395-4402
MissingFormLabel
- 64
Schliess F, Haussinger D.
Cell volume and insulin signaling.
Int Rev Cytol.
2003;
225
187-228
MissingFormLabel
- 65
Diakov A, Nesterov V, Mokrushina M et al.
Protein kinase B alpha (PKBalpha) stimulates the epithelial sodium channel (ENaC)
heterologously expressed in Xenopus laevis oocytes by two distinct mechanisms.
Cell Physiol Biochem.
2010;
26
913-924
MissingFormLabel
- 66
Krueger B, Haerteis S, Yang L et al.
Cholesterol depletion of the plasma membrane prevents activation of the epithelial
sodium channel (ENaC) by SGK1.
Cell Physiol Biochem.
2009;
24
605-618
MissingFormLabel
- 67
Menniti M, Iuliano R, Foller M et al.
60kDa lysophospholipase, a new Sgk1 molecular partner involved in the regulation of
ENaC.
Cell Physiol Biochem.
2010;
26
587-596
MissingFormLabel
- 68
Reisenauer M R, Wang S W, Xia Y et al.
Dot1a contains three nuclear localization signals and regulates the epithelial Na
+ channel (ENaC) at multiple levels.
Am J Physiol Renal Physiol.
2010;
299
F63-F76
MissingFormLabel
- 69
Shumilina E, Zemtsova I M, Heise N et al.
Phosphoinositide-dependent kinase PDK1 in the regulation of Ca2 + entry into mast
cells.
Cell Physiol Biochem.
2010;
26
699-706
MissingFormLabel
- 70
Bohmer C, Palmada M, Kenngott C et al.
Regulation of the epithelial calcium channel TRPV6 by the serum and glucocorticoid-inducible
kinase isoforms SGK1 and SGK3.
FEBS Lett.
2007;
581
5586-5590
MissingFormLabel
- 71
Bergler T, Stoelcker B, Jeblick R et al.
High osmolality induces the kidney-specific chloride channel CLC-K1 by a serum and
glucocorticoid-inducible kinase 1 MAPK pathway.
Kidney Int.
2008;
74
1170-1177
MissingFormLabel
- 72
Sato J D, Chapline M C, Thibodeau R et al.
Regulation of human cystic fibrosis transmembrane conductance regulator (CFTR) by
serum- and glucocorticoid-inducible kinase (SGK1).
Cell Physiol Biochem.
2007;
20
91-98
MissingFormLabel
- 73
Shaw J R, Sato J D, VanderHeide J et al.
The role of SGK and CFTR in acute adaptation to seawater in Fundulus heteroclitus.
Cell Physiol Biochem.
2008;
22
69-78
MissingFormLabel
- 74
Seebohm G, Strutz-Seebohm N, Ureche O N et al.
Long QT syndrome-associated mutations in KCNQ1 and KCNE1 subunits disrupt normal endosomal
recycling of IKs channels.
Circ Res.
2008;
103
1451-1457
MissingFormLabel
- 75
Seebohm G, Strutz-Seebohm N, Baltaev R et al.
Regulation of KCNQ4 potassium channel prepulse dependence and current amplitude by
SGK1 in Xenopus oocytes.
Cell Physiol Biochem.
2005;
16
255-262
MissingFormLabel
- 76
Shumilina E, Lampert A, Lupescu A et al.
Deranged Kv channel regulation in fibroblasts from mice lacking the serum and glucocorticoid
inducible kinase SGK1.
J Cell Physiol.
2005;
204
87-98
MissingFormLabel
- 77
Boehmer C, Laufer J, Jeyaraj S et al.
Modulation of the voltage-gated potassium channel Kv1.5 by the SGK1 protein kinase
involves inhibition of channel ubiquitination.
Cell Physiol Biochem.
2008;
22
591-600
MissingFormLabel
- 78
Laufer J, Boehmer C, Jeyaraj S et al.
The C-terminal PDZ-binding motif in the Kv1.5 potassium channel governs its modulation
by the Na +/H + exchanger regulatory factor 2.
Cell Physiol Biochem.
2009;
23
25-36
MissingFormLabel
- 79
Ullrich S, Berchtold S, Ranta F et al.
Serum- and glucocorticoid-inducible kinase 1 (SGK1) mediates glucocorticoid-induced
inhibition of insulin secretion.
Diabetes.
2005;
54
1090-1099
MissingFormLabel
- 80
Baltaev R, Strutz-Seebohm N, Korniychuk G et al.
Regulation of cardiac shal-related potassium channel Kv 4.3 by serum- and glucocorticoid-inducible
kinase isoforms in Xenopus oocytes.
Pflugers Arch.
2005;
450
26-33
MissingFormLabel
- 81
Arteaga M F, Coric T, Straub C et al.
A brain-specific SGK1 splice isoform regulates expression of ASIC1 in neurons.
Proc Natl Acad Sci USA.
2008;
105
4459-4464
MissingFormLabel
- 82
Strutz-Seebohm N, Seebohm G, Shumilina E et al.
Glucocorticoid adrenal steroids and glucocorticoid-inducible kinase isoforms in the
regulation of GluR6 expression.
J Physiol.
2005;
565
391-401
MissingFormLabel
- 83
Fejes-Toth G, Frindt G, Naray-Fejes-Toth A et al.
Epithelial Na + channel activation and processing in mice lacking SGK1.
Am J Physiol Renal Physiol.
2008;
294
F1298-F1305
MissingFormLabel
- 84
Fuster D G, Bobulescu I A, Zhang J et al.
Characterization of the regulation of renal Na + /H + exchanger NHE3 by insulin.
Am J Physiol Renal Physiol.
2007;
292
F577-F585
MissingFormLabel
- 85
Wang D, Zhang H, Lang F et al.
Acute activation of NHE3 by dexamethasone correlates with activation of SGK1 and requires
a functional glucocorticoid receptor.
Am J Physiol Cell Physiol.
2007;
292
C396-C404
MissingFormLabel
- 86
Yun C C, Chen Y, Lang F.
Glucocorticoid activation of Na(+ )/H(+ ) exchanger isoform 3 revisited. The roles
of SGK1 and NHERF2.
J Biol Chem.
2002;
277
7676-7683
MissingFormLabel
- 87
Grahammer F, Artunc F, Sandulache D et al.
Renal function of gene-targeted mice lacking both SGK1 and SGK3.
Am J Physiol Regul Integr Comp Physiol.
2006;
290
R945-R950
MissingFormLabel
- 88
Shojaiefard M, Strutz-Seebohm N, Tavare J M et al.
Regulation of the Na(+ ), glucose cotransporter by PIKfyve and the serum and glucocorticoid
inducible kinase SGK1.
Biochem Biophys Res Commun.
2007;
359
843-847
MissingFormLabel
- 89
Palmada M, Boehmer C, Akel A et al.
SGK1 kinase upregulates GLUT1 activity and plasma membrane expression.
Diabetes.
2006;
55
421-427
MissingFormLabel
- 90
Jeyaraj S, Boehmer C, Lang F et al.
Role of SGK1 kinase in regulating glucose transport via glucose transporter GLUT4.
Biochem Biophys Res Commun.
2007;
356
629-635
MissingFormLabel
- 91
Bohmer C, Sopjani M, Klaus F et al.
The serum and glucocorticoid inducible kinases SGK1 – 3 stimulate the neutral amino
acid transporter SLC6A19.
Cell Physiol Biochem.
2010;
25
723-732
MissingFormLabel
- 92
Boehmer C, Palmada M, Rajamanickam J et al.
Post-translational regulation of EAAT2 function by co-expressed ubiquitin ligase Nedd
4-2 is impacted by SGK kinases.
J Neurochem.
2006;
97
911-921
MissingFormLabel
- 93
Gehring E M, Zurn A, Klaus F et al.
Regulation of the glutamate transporter EAAT2 by PIKfyve.
Cell Physiol Biochem.
2009;
24
361-368
MissingFormLabel
- 94
Alesutan I S, Ureche O N, Laufer J et al.
Regulation of the glutamate transporter EAAT4 by PIKfyve.
Cell Physiol Biochem.
2010;
25
187-194
MissingFormLabel
- 95
Rajamanickam J, Palmada M, Lang F et al.
EAAT4 phosphorylation at the SGK1 consensus site is required for transport modulation
by the kinase.
J Neurochem.
2007;
102
858-866
MissingFormLabel
- 96
Boehmer C, Rajamanickam J, Schniepp R et al.
Regulation of the excitatory amino acid transporter EAAT5 by the serum and glucocorticoid
dependent kinases SGK1 and SGK3.
Biochem Biophys Res Commun.
2005;
329
738-742
MissingFormLabel
- 97
Boehmer C, Palmada M, Klaus F et al.
The peptide transporter PEPT2 is targeted by the protein kinase SGK1 and the scaffold
protein NHERF2.
Cell Physiol Biochem.
2008;
22
705-714
MissingFormLabel
- 98
Rexhepaj R, Rotte A, Pasham V et al.
PI3 kinase and PDK1 in the regulation of the electrogenic intestinal dipeptide transport.
Cell Physiol Biochem.
2010;
25
715-722
MissingFormLabel
- 99
Shojaiefard M, Christie D L, Lang F.
Stimulation of the creatine transporter SLC6A8 by the protein kinases SGK1 and SGK3.
Biochem Biophys Res Commun.
2005;
334
742-746
MissingFormLabel
- 100
Shojaiefard M, Christie D L, Lang F.
Stimulation of the creatine transporter SLC6A8 by the protein kinase mTOR.
Biochem Biophys Res Commun.
2006;
341
945-949
MissingFormLabel
- 101
Klaus F, Palmada M, Lindner R et al.
Up-regulation of hypertonicity-activated myo-inositol transporter SMIT1 by the cell
volume-sensitive protein kinase SGK1.
J Physiol.
2008;
586
1539-1547
MissingFormLabel
- 102
Palmada M, Dieter M, Speil A et al.
Regulation of intestinal phosphate cotransporter NaPi IIb by ubiquitin ligase Nedd4
– 2 and by serum- and glucocorticoid-dependent kinase 1.
Am J Physiol Gastrointest Liver Physiol.
2004;
287
G143-G150
MissingFormLabel
- 103
Shojaiefard M, Lang F.
Stimulation of the intestinal phosphate transporter SLC34A2 by the protein kinase
mTOR.
Biochem Biophys Res Commun.
2006;
345
1611-1614
MissingFormLabel
- 104
Ullrich S, Zhang Y, Avram D et al.
Dexamethasone increases Na + /K + ATPase activity in insulin secreting cells through
SGK1.
Biochem Biophys Res Commun.
2007;
352
662-667
MissingFormLabel
PD Dr. Dirk Graf
Clinic for Gastroenterology, Hepatology and Infectiology, University Düsseldorf
Moorenstraße 5
40225 Düsseldorf
Telefon: ++ 49/2 11/8 11 78 49
eMail: DirkGraf@gmx.net