Zusammenfassung
Ziel: Eine genaue Gewichtsschätzung hat wesentlichen Einfluss auf das weitere geburtshilfliche
Vorgehen. Die gängigen Gewichtsformeln haben eine gewisse Ungenauigkeit. Der Abdomenumfang
(AC) des Feten ist nicht nur in den meisten Gewichtsgleichungen enthalten, sondern
hat meist auch den größten Einfluss auf die Gewichtsschätzung. Das Ziel dieser Studie
war es daher, eine neue Gewichtsformel für Feten mit einem kleinen Abdomenumfang (≤ 29,0 cm)
zu entwickeln. Material und Methoden: In die Studie wurden 323 Schwangerschaften aufgenommen. Einschlusskriterien waren
eine Einlingsschwangerschaft, eine komplette Ultraschallbiometrie mit einem AC von
≤ 29,0 cm innerhalb von 7 Tagen vor Geburt sowie das Fehlen von strukturellen und
chromosomalen Störungen. Zwei „best-fit“-Formeln wurden mittels Vorwärts-Regressionsanalyse
bestimmt. Schließlich wurde die Genauigkeit der neuen Formeln mit gängigen Gewichtsformeln
verglichen. Ergebnisse: Im Gegensatz zu den Routineformeln zeigten die neuen Gleichungen keinen systematischen
Fehler. Die Mediane des absoluten prozentualen Fehlers waren bei den beiden neuen
Formeln am niedrigsten. Außerdem wiesen sie die engsten „limits of agreement“ auf.
Hinsichtlich der kumulativen Verteilung schlossen die neuen Formeln auf allen Ebenen
die meisten Fälle ein. Schlussfolgerung: Diese speziell entwickelten Gleichungen helfen, die fetale Gewichtsschätzung bei
Feten mit einem AC ≤ 29.0 cm zu verbessern. Zur optimalen Gewichtsschätzung empfehlen
wir die Verwendung der neuen Formel II.
Abstract
Purpose: Accurate estimation of fetal weight is a valuable tool for determining further obstetric
management. Commonly used weight formulas lack accuracy, even though some equations
appear to be favorable within defined weight ranges. However, due to the fact that
fetal weight is not known in advance, it is not always clear which formula is suitable.
In most of the commonly used equations, the fetal abdominal circumference (AC) is
not only included but also has the greatest impact on weight estimation. The aim of
our study was to develop and evaluate a new formula specifically designed for a small
fetal AC in order to improve weight estimation. Materials and Methods: The study included 323 pregnancies. The inclusion criteria were singleton pregnancy,
ultrasound examination with complete biometric parameters and an AC ≤ 29.0 cm within
7 days of delivery, and an absence of structural or chromosomal malformations. Two
“best-fit” formulas were derived by forward regression analysis. Finally, the accuracy
of the new formulas was compared to commonly used weight equations by using the percentage
error, absolute percentage error (APE), limits of agreement (LOA) and cumulative distribution.
Results: Contrary to the routine methods, which significantly underestimated fetal weight,
the new formulas did not have a systematic error. The medians of the APE were the
lowest (7.13 and 7.16) when compared to other equations. Moreover, the new formulas
demonstrated the narrowest LOA. At all discrepancy levels (5 %, 10 %, 15 %, and 20 %),
the new formulas included significantly more cases than the commonly used methods.
Conclusion: The specifically designed equations help to improve fetal weight estimation for fetuses
with an AC ≤ 29.0 cm. For optimal weight estimation, we recommend using the new formula
II.
Key words
weight formula - fetal weight estimation - abdominal circumference - small fetus
References
1
Kurmanavicius J, Burkhardt T, Wisser J et al.
Ultrasonographic fetal weight estimation: accuracy of formulas and accuracy of examiners
by birth weight from 500 to 5000 g.
J Perinat Med.
2004;
32
155-161
2
Dudley N J.
A systematic review of the ultrasound estimation of fetal weight.
Ultrasound Obstet Gynecol.
2005;
25
80-89
3
Beutler G M, Kurmanavicius J, Hoffmann M et al.
New nomogram for foetal weight estimation based on Hadlock’s two-parameter formula.
Ultraschall in Med.
2004;
25
58-64
4
Siemer J, Wolf T, Hart N et al.
Increased accuracy of fetal weight estimation with a gender-specific weight formula.
Fetal Diagn Ther.
2008;
24
321-326
5
Siemer J, Egger N, Hart N et al.
Fetal weight estimation by ultrasound: comparison of 11 different formulae and examiners
with differing skill levels.
Ultraschall in Med.
2008;
29
159-164
6
Siemer J, Hilbert A, Hart N et al.
A new sonographic weight formula for fetuses ≤ 2500 g.
Ultraschall in Med.
2009;
30
47-51
7
Scott F, Beeby P, Abbott J et al.
New formula for estimating fetal weight below 1000g: comparison with existing formulas.
J Ultrasound Med.
1996;
15
669-672
8
Schild R L, Fell K, Fimmers R et al.
A new formula for calculating weight in the fetus of ≤ 1600 g.
Ultrasound Obstet Gynecol.
2004;
24
775-780
9
Rempen A.
Vaginal ultrasonography in the first trimester. II. Quantitative parameters.
Z Geburtshilfe Perinatol.
1991;
195
163-171
10
Gardosi J, Geirsson R T.
Routine ultrasound is the method of choice for dating pregnancy.
Br J Obstet Gynaecol.
1998;
105
933-936
11
Kurmanavicius J, Wright E M, Royston P et al.
Fetal ultrasound biometry: 1. Head reference values.
Br J Obstet Gynaecol.
1999;
106
126-135
12
Kurmanavicius J, Wright E M, Royston P et al.
Fetal ultrasound biometry: 2. Abdomen and femur length reference values.
Br J Obstet Gynaecol.
1999;
106
136-143
13
Valentin L.
Minimum training recommendations for the practice of medical ultrasound.
Ultraschall in Med.
2006;
27
79-105
14
Eichhorn K H, Schramm T, Bald R et al.
DEGUM grade I quality standards in obstetric ultrasound diagnosis during the 19th-22nd
week of pregnancy.
Ultraschall in Med.
2006;
27
185-187
15
Hadlock F P, Harrist R B, Sharman R S et al.
Estimation of fetal weight with the use of head, body, and femur measurements – a
prospective study.
Am J Obstet Gynecol.
1985;
151
333-337
16
Schild R L, Sachs C, Fimmers R et al.
Sex-specific fetal weight prediction by ultrasound.
Ultrasound Obstet Gynecol.
2004;
23
30-35
17
Warsof S L, Gohari P, Berkowitz R L et al.
The estimation of fetal weight by computer-assisted analysis.
Am J Obstet Gynecol.
1977;
128
881-892
18
Pitman E JG.
A note on normal correlation.
Biometrika.
1939;
31
9-12
19 Snedecor G W, Cochran W G. Comparison of two correlated variances in paired samples.
In, Statistical Methods.. 8 ed. Ames: Iowa State University Press; 1989: 192-193
20
Bland J M, Altman D G.
Statistical methods for assessing agreement between two methods of clinical measurement.
Lancet.
1986;
1
307-310
21
Hoopmann M, Bernau B, Hart N et al.
Do specific weight formulas for fetuses ≤ 1500 g really improve weight estimation?.
Ultraschall in Med.
2010;
31
48-52
22
Siemer J, Peter W, Zollver H et al.
How good is fetal weight estimation using volumetric methods?.
Ultraschall in Med.
2008;
29
377-382
23
Lee W, Balasubramaniam M, Deter R L et al.
New fetal weight estimation models using fractional limb volume.
Ultrasound Obstet Gynecol.
2009;
34
556-565
24
Lee W, Deter R L, Ebersole J D et al.
Birth weight prediction by three-dimensional ultrasonography: fractional limb volume.
J Ultrasound Med.
2001;
20
1283-1292
25
Lindell G, Marsal K.
Sonographic fetal weight estimation in prolonged pregnancy: comparative study of two-
and three-dimensional methods.
Ultrasound Obstet Gynecol.
2009;
33
295-300
26
Mongelli M, Gardosi J.
Gestation-adjusted projection of estimated fetal weight.
Acta Obstet Gynecol Scand.
1996;
75
28-31
Dr. Sven Kehl
Department of Obstetrics and Gynaecology, University Hospital
Theodor-Kutzer-Ufer 1 – 3
68167 Mannheim
Phone: ++ 49/6 21/3 83 22 86
Fax: ++ 49/6 21/3 83 38 14
Email: sven.kehl@umm.de