Subscribe to RSS
DOI: 10.1055/s-0031-1271747
© Georg Thieme Verlag KG Stuttgart · New York
Exercise-stimulated GLUT4 Expression is Similar in Normotensive and Hypertensive Rats
Publication History
                     received 29.07.2010
                     
                     accepted after second revision 18.01.2011
                     
Publication Date:
17 February 2011 (online)

Abstract
The effects of exercise training on systolic blood pressure (BP), insulin sensitivity, and plasma membrane GLUT4 protein content in spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats were compared. 16 SHR and 16 WKY male rats, aged 6 months, were randomized into sedentary and trained (treadmill running, 5 days/week, 60 min/day for 10 weeks) groups (n=8/group). At baseline, SHR had lower insulin sensitivity than WKY rats, however, there were no differences between WKY and SHR GLUT4 expression. The 10-week training reduced BP by ∼19% in SHR, improved insulin sensitivity by ∼24% in SHR, but not in WKY, and increased GLUT4 expression in both animal models. Compared to the sedentary group, there was an increase of GLUT4 in WKY rats by ∼25% in the heart, by ∼23% in the gastrocnemius, and by ∼15% in the fat tissue. Trained SHR presented an increase in GLUT4 of ∼21%, ∼20%, and ∼14%, in the same tissues, respectively. There were no differences between SHR and WKY rats in post-training GLUT4 expression. We conclude that training determined BP and insulin resistance reduction in SHR, and increased GLUT4 expression in both normotensive and hypertensive rats. However, considering the similar rise in GLUT4-induced training in SHR and WKY, it is possible that GLUT4 levels in plasma membrane fraction do not have a pivotal role in the exercise-induced improvement of insulin sensitivity in SHR.
Key words
glucose transporter type 4 - exercise training - insulin resistance - hypertension
References
- 1 
            James DJ, Cairns F, Salt IP, Murphy GJ, Dominiczak AF, Connell JM, Gould GW. 
            Skeletal muscle of stroke-prone spontaneously hypertensive rats exhibits reduced insulin-stimulated
            glucose transport and elevated levels of caveolin and flotillin. 
            Diabetes. 
            2001; 
            50 
            2148-2156 
            
            Reference Ris Wihthout Link
- 2 
            Cingolani G, Caldiz C. 
            Insulin resistance and GLUT-4 glucose transporter in adipocytes from hypertensive
            rats. 
            Metabolism. 
            2004; 
            53 
            382-387 
            
            Reference Ris Wihthout Link
- 3 
            de Carvalho Papa P, Vargas AM, da Silva JL, Nunes MT, Machado UF. 
            GLUT4 protein is differently modulated during development of obesity in monosodium
            glutamate-treated mice. 
            Life Sci. 
            2002; 
            71 
            1917-1928 
            
            Reference Ris Wihthout Link
- 4 
            De Angelis Lobo d’Avila K, Gadonski G, Fang J, Dall’Ago P, Albuquerque VL, Peixoto LR, Fernandes TG, Irigoyen MC. 
            Exercise reverses peripheral insulin resistance in trained L-NAME-hypertensive rats. 
            Hypertension. 
            1999; 
            34 
            768-772 
            
            Reference Ris Wihthout Link
- 5 
            Lira V, Soltow Q, Long J, Betters J, Sellman J. 
            Nitric oxide increases GLUT4 expression and regulates AMPK signaling in skeletal muscle. 
            Am J Physiol Endocrinol Metab. 
            2007; 
            293 
            E1062-E1068 
            
            Reference Ris Wihthout Link
- 6 
            Tipton C, Sebastian L, Overton J, Woodman C, Williams S. 
            Chronic exercise and its hemodynamic influences on resting blood pressure of hypertensive
            rats. 
            J Appl Physiol. 
            1991; 
            71 
            2206-2210 
            
            Reference Ris Wihthout Link
- 7 
            Whelton S, Chin A, Xin X, He J. 
            Effects of aerobic exercise on blood pressure: A meta-analysis of randomized controlled
            trials. 
            Ann/intern Med. 
            2002; 
            136 
            493-503 
            
            Reference Ris Wihthout Link
- 8 
            Gava N, Veras-Silva A, Negrão C, Krieger EM. 
            Low-intensivity exercise training attenuates cardiac B-adrenergic tone during exercise
            in spontaneously hypertensive rats. 
            Hypertension. 
            1995; 
            26 
            1129-1133 
            
            Reference Ris Wihthout Link
- 9 
            Graham D, Rush J. 
            Exercise training improves aortic endothelium-dependent vasorelaxation and determinants
            of nitric oxide bioavailability in spontaneously hypertensive rats. 
            J Appl Physiol. 
            2004; 
            96 
            2088-2096 
            
            Reference Ris Wihthout Link
- 10 
            Song Y, Sawamura M, Ikeda K, Igawa S, Nara Y, Yamori Y. 
            Training in swimming reduces blood pressure and increases muscle glucose transport
            activity as well as GLUT4 contents in stroke-prone spontaneously hypertensive rats. 
            Appl Human Sci. 
            1998; 
            17 
            275-280 
            
            Reference Ris Wihthout Link
- 11 
            Lehnen AM, Leguisamo NM, Pinto GH, Markoski MM, De Angelis K, Machado UF, Schaan B. 
            The beneficial effects of exercise in rodents are preserved after detraining: a phenomenon
            unrelated to GLUT4 expression. 
            Cardiovascular Diabetology. 
            2010; 
            9 
            67 
            
            Reference Ris Wihthout Link
- 12 
            Jessen N, Selmer Buhl E, Pold R, Schmitz O, Lund S. 
            A novel insulin sensitizer (S15511) enhances insulin-stimulated glucose uptake in
            rat skeletal muscles. 
            Horm Metab Res. 
            2008; 
            40 
            269-275 
            
            Reference Ris Wihthout Link
- 13 
            Fogari R, Zoppi A, Ferrari I, Mugellini A, Preti P, Lazzari P, Derosa G. 
            Comparative effects of telmisartan and eprosartan on insulin sensitivity in the treatment
            of overweight hypertensive patients. 
            Horm Metab Res. 
            2009; 
            41 
            893-898 
            
            Reference Ris Wihthout Link
- 14 
            Garvey W, Malanu L, Zhu J, Brechtel-Hook G, Wallace P, Baron A. 
            Evidence of the defects in trafficking and translocation of GLUT4 glucose transporter
            in skeletal muscle as a cause of human insulin resistance. 
            J Clin Invest. 
            1998; 
            101 
            2377-2386 
            
            Reference Ris Wihthout Link
- 15 
            Carvalho E, Jansson PA, Nagaev I, Wenthzel AM, Smith U. 
            Insulin resistance with low cellular IRS-1 expression is also associated with low
            GLUT4 expression and impaired insulin-stimulated glucose transport. 
            Faseb J. 
            2001; 
            15 
            1101-1113 
            
            Reference Ris Wihthout Link
- 16 
            Pfeffer J, Pfeffer M, MC F, ED F. 
            Cardiac function and morphology with aging in the spontaneously hypertensive rat. 
            Am J Physiol. 
            1979; 
            237 
            H461-H468 
            
            Reference Ris Wihthout Link
- 17 
            Katayama S, Inaba M, Maruno Y, Morita T, Awata T, Oka Y. 
            Glucose intolerance in spontaneously hypertensive and wistar-kyoto rats: enhanced
            gene expression and synthesis of skeletal muscle glucose transporter 4. 
            Hypertens Res. 
            1997; 
            20 
            279-286 
            
            Reference Ris Wihthout Link
- 18 
            NIH
             .Guide for the Care and Use of Laboratory Animals. Washington, DC: National Academy Press; 1996: 21-70 
            Reference Ris Wihthout Link
- 19 
            Rodrigues B, Figueroa D, Mostarda C, Heeren M, Irigoyen M, De Angelis K. 
            Maximal exercise test is a useful method for physical capacity and oxygen consumption
            determination in streptozotocin-diabetic rats. 
            Cardiovasc Diabetol. 
            2007; 
            6 
            38 
            
            Reference Ris Wihthout Link
- 20 
            Host H, Hansen P, Nolte L, Chen M, Holloszy J. 
            Rapid reversal of adaptive increases in muscle GLUT4 and glucose transport capacity
            after cessation of training. 
            J Appl Physiol. 
            1998; 
            84 
            798-802 
            
            Reference Ris Wihthout Link
- 21 
            Mori RC, Hirabara SM, Hirata AE, Okamoto MM, Machado UF. 
            Glimepiride as insulin sensitizer: increased liver and muscle responses to insulin. 
            Diabetes Obes Metab. 
            2008; 
            10 
            596-600 
            
            Reference Ris Wihthout Link
- 22 
            Bradford MM. 
            A rapid and sensitive method for the quantitation of microgram quantities of protein
            utilizing the principle of protein-dye binding. 
            Anal Biochem. 
            1976; 
            72 
            248-254 
            
            Reference Ris Wihthout Link
- 23 
            Klein D, Kern RM, Sokol RZ. 
            A method for quantification and correction of proteins after transfer to immobilization
            membranes. 
            Biochem Mol Biol Int. 
            1995; 
            36 
            59-66 
            
            Reference Ris Wihthout Link
- 24 
            Collison M, James D, Grahan D, Homan G, Connell J, Dominiczak A, Gould G, Salt I. 
            Reduced insulin-stimulated GLUT4 bioavailability in stroke-prone spontaneously hypertensive
            rats. 
            Diabetologia. 
            2005; 
            48 
            539-546 
            
            Reference Ris Wihthout Link
- 25 
            Joost HG, Bell GI, Best JD, Birnbaum MJ, Charron MJ, Chen YT, Doege H, James DE, Lodish HF, Moley KH, Moley JF, Mueckler M, Rogers S, Schurmann A, Seino S, Thorens B. 
            Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. 
            Am J Physiol Endocrinol Metab. 
            2002; 
            282 
            E974-E976 
            
            Reference Ris Wihthout Link
- 26 
            Thai M, Guruswamy S, Cao K, Pessin J, Olson A. 
            Myocyte enhancer factor 2 (MEF2)-binding site is required for GLUT4 gene expression
            in transgenic mice. Regulation od MEF2 DNA binding activity in insulin-deficient diabetes. 
            J Biol Chem. 
            1998; 
            273 
            285-292 
            
            Reference Ris Wihthout Link
- 27 
            McGee S, Spasling D, Olson A, Hargreaves M. 
            Exercise increases MEF2- and GEF DNA binding activity in human skeletal muscle. 
            FASEB J. 
            2006; 
            20 
            348-359 
            
            Reference Ris Wihthout Link
- 28 
            Sparling D, Griesel B, Weems J, Olson A. 
            GLUT4 Enhancer Factor (GEF) interacts with MEF2A and HDAC5 to regulate the GLUT4 Promoter
            in adipocytes. 
            Journal of Biological Chemistry. 
            2008; 
            282 
            7429-7447 
            
            Reference Ris Wihthout Link
- 29 
            Kurth E, Hirshman M, Goodyear L, Winder W. 
            5’AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. 
            Diabetes. 
            1999; 
            48 
            1667-1671 
            
            Reference Ris Wihthout Link
- 30 
            Treebak JT, Glund S, Deshmukh A, Klein DK, Long YC, Jensen TE, Jorgensen SB, Viollet B, Andersson L, Neumann D, Wallimann T, Richter EA, Chibalin AV, Zierath JR, Wojtaszewski JF. 
            AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic
            and regulatory subunits. 
            Diabetes. 
            2006; 
            55 
            2051-2058 
            
            Reference Ris Wihthout Link
- 31 
            Kramer HF, Witczak CA, Fujii N, Jessen N, Taylor EB, Arnolds DE, Sakamoto K, Hirshman MF, Goodyear LJ. 
            Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and
            contraction in mouse skeletal muscle. 
            Diabetes. 
            2006; 
            55 
            2067-2076 
            
            Reference Ris Wihthout Link
- 32 
            Smith J, Collins M, Grobler L, Magee C, Ojuka E. 
            Exercise and CaMK activation both increase the binding of MEF2A to the GLUT4 promoter
            in skeletal muscule in vivo. 
            Am J Physiol Endocrinol Metab. 
            2007; 
            292 
            E413-E420 
            
            Reference Ris Wihthout Link
- 33 
            Dolinsky VW, Chan AY, Robillard Frayne I, Light PE, Des Rosiers C, Dyck JR. 
            Resveratrol prevents the prohypertrophic effects of oxidative stress on LKB1. 
            Circulation. 
            2009; 
            119 
            1643-1652 
            
            Reference Ris Wihthout Link
- 34 
            Wright D, Hucker K, Holloszy J, Han D. 
            Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions. 
            Diabetes. 
            2004; 
            53 
            330-335 
            
            Reference Ris Wihthout Link
- 35 
            Sakamoto K, Goransson O, Hardie DG, Alessi DR. 
            Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction,
            phenformin, and AICAR. 
            Am J Physiol Endocrinol Metab. 
            2004; 
            287 
            E310-E327 
            
            Reference Ris Wihthout Link
- 36 
            Wu H, Rothermel B, Kanatous S, Rosenberg P, Naya FJ, Shelton JM, Hutcheson KA, DiMaio JM, Olson EN, Bassel-Duby R, Williams RS. 
            Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent
            pathway. 
            Embo J. 
            2001; 
            20 
            6414-6423 
            
            Reference Ris Wihthout Link
- 37 
            Sriwijitkamol A, Ivy JL, Christ-Roberts C, DeFronzo RA, Mandarino LJ, Musi N. 
            LKB1-AMPK signaling in muscle from obese insulin-resistant Zucker rats and effects
            of training. 
            Am J Physiol Endocrinol Metab. 
            2006; 
            290 
            E925-E932 
            
            Reference Ris Wihthout Link
- 38 
            Higaki Y, Hirshman MF, Fujii N, Goodyear LJ. 
            Nitric oxide increases glucose uptake through a mechanism that is distinct from the
            insulin and contraction pathways in rat skeletal muscle. 
            Diabetes. 
            2001; 
            50 
            241-247 
            
            Reference Ris Wihthout Link
- 39 
            Chou TC, Yen MH, Li CY, Ding YA. 
            Alterations of nitric oxide synthase expression with aging and hypertension in rats. 
            Hypertension. 
            1998; 
            31 
            643-648 
            
            Reference Ris Wihthout Link
- 40 
            Chien CS, Cheng SC, Wu HT, Tsao CW, Cheng JT. 
            Insulin resistance induced by glucosamine in fructose-fed rats. 
            Horm Metab Res. 
            2009; 
            41 
            542-547 
            
            Reference Ris Wihthout Link
Correspondence
Dra. B. Schaan
         Instituto de Cardiologia do Rio
         
         Grande do Sul
         
         Av. Princesa Isabel
         
         395 Santana
         
         90620-001 Porto Alegre
         
         RS Brazil
         
         Phone: +55/51/3230 3600 (3636/3757)
         
         Fax: +55/51/3230 3600 (3757)
         
         Email: beatrizschaan@gmail.com
         
         Email: amlehnen@terra.com.br
         
         
 
     
      
    