RSS-Feed abonnieren
DOI: 10.1055/s-0031-1271693
© Georg Thieme Verlag KG Stuttgart · New York
Melatonin Exerts Direct Inhibitory Actions on ACTH Responses in the Human Adrenal Gland
Publikationsverlauf
received 18.11.2010
accepted 12.01.2011
Publikationsdatum:
17. Februar 2011 (online)

Abstract
In nonhuman primates and rodents, melatonin acting directly on the adrenal gland, inhibits glucocorticoid response to ACTH. In these species, an intrinsic adrenal circadian clock is involved in ACTH-stimulated glucocorticoid production. We investigated whether these findings apply to the human adrenal gland by determining i) expression of clock genes in vivo and ii) direct effects of melatonin in ACTH-stimulated adrenal explants over a) expression of the clock genes PER1 (Period 1) mRNA and BMAL1 [Brain-Muscle (ARNT)-like] protein, ACTH-induced steroidogenic acute regulatory protein (StAR), and 3β-hydroxysteroid dehydrogenase (3β-HSD) and b) over cortisol and progesterone production. Adrenal tissue was obtained from 6 renal cancer patients undergoing unilateral nephrectomy-adrenalectomy. Expression of the clock genes PER1, PER2, CRY2 (Cryptochrome 2), CLOCK (Circadian Locomotor Output Cycles Kaput) and BMAL1, was investigated by RT-PCR in a normal adrenal and in an adenoma. In independent experiments, explants from 4 normal adrenals were preincubated in culture medium (6 h) followed by 12 h in: medium alone; ACTH (100 nM); ACTH plus melatonin (100 nM); and melatonin alone. The explants’ content of PER1 mRNA (real-time PCR) and StAR, 3β-HSD, BMAL1 (immuno slot-blot), and their cortisol and progesterone production (RIA) were measured. The human adrenal gland expresses the clock genes PER1, PER2, CRY2, CLOCK, and BMAL1. ACTH increased PER1 mRNA, BMAL1, StAR, and 3β-HSD protein levels, and cortisol and progesterone production. Melatonin inhibited these ACTH effects. Our study demonstrates, for the first time, direct inhibitory effects of melatonin upon several ACTH responses in the human adrenal gland.
Key words
neurohormone - steroidogenesis - clock genes - human adrenal function
References
- 1
Reiter RJ, Tan DX, Fuentes-Broto L.
Melatonin: a multitasking molecule.
Prog Brain Res.
2010;
181
127-151
MissingFormLabel
- 2
Dubocovich ML, Markowska M.
Functional MT1 and MT2 melatonin receptors in mammals.
Endocrine.
2005;
27
101-110
MissingFormLabel
- 3
Ekmekcioglu C.
Melatonin receptors in humans: biological role and clinical relevance.
Biomed Pharmacother.
2006;
60
97-108
MissingFormLabel
- 4
Torres-Farfan C, Richter HG, Rojas-Garcia P, Vergara M, Forcelledo ML, Valladares LE, Torrealba F, Valenzuela GJ, Seron-Ferre M.
mt1 Melatonin receptor in the primate adrenal gland: inhibition of adrenocorticotropin-stimulated
cortisol production by melatonin.
J Clin Endocrinol Metab.
2003;
88
450-458
MissingFormLabel
- 5
Torres-Farfan C, Valenzuela FJ, Mondaca M, Valenzuela GJ, Krause B, Herrera EA, Riquelme R, Llanos AJ, Seron-Ferre M.
Evidence of a role for melatonin in fetal sheep physiology: direct actions of melatonin
on fetal cerebral artery, brown adipose tissue and adrenal gland.
J Physiol.
2008;
586
4017-4027
MissingFormLabel
- 6
Richter HG, Torres-Farfan C, Garcia-Sesnich J, Abarzua-Catalan L, Henriquez MG, Alvarez-Felmer M, Gaete F, Rehren GE, Seron-Ferre M.
Rhythmic expression of functional MT1 melatonin receptors in the rat adrenal gland.
Endocrinology.
2008;
149
995-1003
MissingFormLabel
- 7
Campino C, Valenzuela FJ, Arteaga E, Torres-Farfan C, Trucco C, Velasco A, Guzmán S, Seron-Ferre M.
Melatonin reduces cortisol response to ACTH in humans.
Rev Med Chile.
2008;
136
1390-1397
MissingFormLabel
- 8
Torres-Farfan C, Abarzua-Catalan L, Valenzuela FJ, Mendez N, Richter HG, Valenzuela GJ, Seron-Ferre M.
Cryptochrome 2 expression level is critical for adrenocorticotropin stimulation of
cortisol production in the capuchin monkey adrenal.
Endocrinology.
2009;
150
2717-2722
MissingFormLabel
- 9
Son GH, Chung S, Choe HK, Kim HD, Baik SM, Lee H, Lee HW, Choi S, Sun W, Kim H, Cho S, Lee KH, Kim K.
Adrenal peripheral clock controls the autonomous circadian rhythm of glucocorticoid
by causing rhythmic steroid production.
Proc Nat Acad Sci USA.
2008;
105
20970-20975
MissingFormLabel
- 10
Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, Tian J, Hoffmann MW, Eichele G.
The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing
in the adrenal cortical clock.
Cell Metabolism.
2006;
4
163-173
MissingFormLabel
- 11
Nakao N, Yasuo S, Nishimura A, Yamamura T, Watanabe T, Anraku T, Okano T, Fukada Y, Sharp PJ, Ebihara S, Yoshimura T.
Circadian clock gene regulation of steroidogenic acute regulatory protein gene expression
in preovulatory ovarian follicles.
Endocrinology.
2007;
148
3031-3038
MissingFormLabel
- 12
Sewer MB, Waterman MR.
ACTH modulation of transcription factors responsible for steroid hydroxylase gene
expression in the adrenal cortex.
Microsc Res Tech.
2003;
61
300-307
MissingFormLabel
- 13
Valenzuela FJ, Torres-Farfan C, Richter HG, Mendez N, Campino C, Torrealba F, Valenzuela GJ, Seron-Ferre M.
Clock gene expression in adult primate suprachiasmatic nuclei and adrenal: is the
adrenal a peripheral clock responsive to melatonin?.
Endocrinology.
2008;
149
1454-1461
MissingFormLabel
- 14
Torres-Farfan C, Richter HG, Germain AM, Valenzuela GJ, Campino C, Rojas-García P, Forcelledo ML, Torrealba F, Seron-Ferre M.
Maternal melatonin selectively inhibits cortisol production in the primate fetal adrenal
gland.
J Physiol.
2004;
554
841-856
MissingFormLabel
- 15
Torres-Farfan C, Rocco V, Monsó C, Valenzuela FJ, Campino C, Germain A, Torrealba F, Valenzuela GJ, Seron-Ferre M.
Maternal melatonin effects on clock gene expression in a nonhuman primate fetus.
Endocrinology.
2006;
147
4618-4626
MissingFormLabel
- 16
Morgan PJ, Ross AW, Graham ES, Adam C, Messager S, Barrett P.
oPer1 is an early response gene under photoperiodic regulation in the ovine pars tuberalis.
J Neuroendocrinol.
1998;
10
319-323
MissingFormLabel
- 17
Lomax MA, Sadiq F, Karamanlidis G, Karamitri A, Trayhurn P, Hazlerigg DG.
Ontogenic loss of brown adipose tissue sensitivity to beta-adrenergic stimulation
in the ovine.
Endocrinology.
2007;
148
461-468
MissingFormLabel
- 18
Torres-Farfan C, Valenzuela FJ, Germain AM, Viale ML, Campino C, Torrealba F, Valenzuela GJ, Richter HG, Serón-Ferré M.
Maternal melatonin stimulates growth and prevents maturation of the capuchin monkey
fetal adrenal gland.
J Pineal Res.
2006;
41
58-66
MissingFormLabel
- 19
Lemos DR, Downs JL, Urbanski HF.
Twenty-four-hour rhythmic gene expression in the rhesus macaque adrenal gland.
Mol Endocrinol.
2006;
20
1164-1176
MissingFormLabel
- 20
Fahrenkrug J, Hannibal J, Georg B.
Diurnal rhythmicity of the canonical clock genes Per1, Per2 and Bmal1 in the rat adrenal
gland is unaltered after hypophysectomy.
J Neuroendocrinol.
2008;
20
323-329
MissingFormLabel
- 21
Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, Maywood ES, Hastings MH, Reppert SM.
mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock
feedback loop.
Cell.
1999;
98
193-205
MissingFormLabel
- 22
Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ.
Role of the CLOCK protein in the mammalian circadian mechanism.
Science.
1998;
280
1564-1569
MissingFormLabel
- 23
Yu W, Nomura M, Ikeda M.
Interactivating feedback loops within the mammalian clock: BMAL1 is negatively autoregulated
and upregulated by CRY1, CRY2, and PER2.
Biochem Biophys Res Commun.
2002;
290
933-941
MissingFormLabel
- 24
Rahman SA, Kollara A, Brown TJ, Casper RF.
Selectively filtering short wavelengths attenuates the disruptive effects of nocturnal
light on endocrine and molecular circadian phase markers in rats.
Endocrinology.
2008;
149
6125-6135
MissingFormLabel
- 25
Ratajczak CK, Boehle KL, Muglia LJ.
Impaired steroidogenesis and implantation failure in Bmal1-/-mice.
Endocrinology.
2009;
150
1879-1885
MissingFormLabel
- 26
Alvarez JD, Hansen A, Ord T, Bebas P, Chappell PE, Giebultowicz JM, Williams C, Moss S, Sehgal A.
The circadian clock protein BMAL1 is necessary for fertility and proper testosterone
production in mice.
J Biol Rhythms.
2008;
23
26-36
MissingFormLabel
- 27
Doi M, Takahashi Y, Komatsu R, Yamazaki F, Yamada H, Haraguchi S, Emoto N, Okuno Y, Tsujimoto G, Kanematsu A, Ogawa O, Todo T, Tsutsui K, van der Horst GT, Okamura H.
Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated
adrenal Hsd3b6.
Nat Med.
2010;
16
67-74
MissingFormLabel
- 28
Imbesi M, Arslan AD, Yildiz S, Sharma R, Gavin D, Tun N, Manev H, Uz T.
The melatonin receptor MT1 is required for the differential regulatory actions of
melatonin on neuronal ‘clock’ gene expression in striatal neurons in vitro.
J Pineal Res.
2009;
46
87-94
MissingFormLabel
- 29
Ansurudeen I, Kopprasch S, Ehrhart-Bornstein M, Willenberg HS, Krug AW, Funk RH, Bornstein SR.
Vascular-adrenal niche–endothelial cell-mediated sensitization of human adrenocortical
cells to angiotensin II.
Horm Metab Res.
2006;
38
476-480
MissingFormLabel
- 30
Dickmeis T.
Glucocorticoids and the circadian clock.
J Endocrinol.
2009;
200
3-22
MissingFormLabel
- 31
Engeland WC, Arnhold MM.
Neural circuitry in the regulation of adrenal corticosterone rhythmicity.
Endocrine.
2005;
28
325-332
MissingFormLabel
1 Both authors contributed equally to this work.
Correspondence
M. Seron-FerrePhD
Departamento de
Fisiopatología
ICBM
Facultad de Medicina
Universidad de Chile
Salvador 486
Casilla 16038
Santiago
Chile
Telefon: +56/2/274 1560
Fax: +56/2/274 1628
eMail: mseron@med.uchile.cl