Abstract
Aldol reactions of racemic enolizable dioxolan-protected α-substituted-β-ketoaldehydes
with representative achiral ketones catalyzed by proline or 5-(2-pyrrolidine-2-yl)-1H -tetrazole in wet DMSO proceed with
dynamic kinetic resolution (or via DYKAT with an α-substituted-β-alkoxyaldehyde)
to give adducts with high dr and ee.
Key words
aldol reaction - chiral aldehydes - kinetic
resolution - organocatalysis - polypropionates
References
<A NAME="RY02310ST-1">1 </A>
List B.
Lerner RA.
Barbas CF.
J.
Am. Chem. Soc.
2000,
122:
2395
Recent reviews:
<A NAME="RY02310ST-2A">2a </A>
Zlotin SG.
Kucherenko AS.
Beletskaya IP.
Russ. Chem. Rev.
2009,
78:
737
<A NAME="RY02310ST-2B">2b </A>
Kotsuki H.
Ikishima H.
Okuyama A.
Heterocycles
2008,
75:
493
<A NAME="RY02310ST-2C">2c </A>
Melchiorre P.
Marigo M.
Carlone A.
Bartoli G.
Angew. Chem. Int. Ed.
2008,
47:
6138
<A NAME="RY02310ST-2D">2d </A>
Mukherjee S.
Yang JW.
Hoffmann S.
List B.
Chem. Rev.
2007,
107:
5471
<A NAME="RY02310ST-2E">2e </A>
Pellissier H.
Tetrahedron
2007,
63:
9267
<A NAME="RY02310ST-2F">2f </A>
Guillena G.
Najera C.
Ramon DJ.
Tetrahedron:
Asymmetry
2007,
18:
2249
<A NAME="RY02310ST-3A">3a </A>
Ward DE.
Man CC.
Guo C.
Tetrahedron Lett.
1997,
38:
2201
<A NAME="RY02310ST-3B">3b </A>
Ward DE.
Guo C.
Sasmal PK.
Man
CC.
Sales M.
Org. Lett.
2000,
2:
1325
<A NAME="RY02310ST-3C">3c </A>
Ward DE.
Becerril-Jimenez F.
Zahedi MM.
J. Org. Chem.
2009,
74:
4447 ; and references cited therein
<A NAME="RY02310ST-4A">4a </A>
Ward DE.
Jheengut V.
Tetrahedron
Lett.
2004,
45:
8347
See also:
<A NAME="RY02310ST-4B">4b </A>
Nyberg AI.
Usano A.
Pihko PM.
Synlett
2004,
1891
<A NAME="RY02310ST-4C">4c </A>
Pihko PM.
Laurikainen KM.
Usano A.
Nyberg AI.
Kaavi JA.
Tetrahedron
2006,
62:
317
Recent examples with chiral aldehyde
acceptors:
<A NAME="RY02310ST-5A">5a </A>
Hanessian S.
Mi X.
Synlett
2010,
761
<A NAME="RY02310ST-5B">5b </A>
Suri JT.
Ramachary DB.
Barbas CF.
Org. Lett.
2005,
7:
1383
With evidence of double stereodifferentiation:
<A NAME="RY02310ST-5C">5c </A>
Palyam N.
Majewski M.
J. Org. Chem.
2009,
74:
4390
<A NAME="RY02310ST-5D">5d </A>
Calderon F.
Doyaguez EG.
Cheong PH.-Y.
Fernandez-Mayoralas A.
Houk KN.
J. Org. Chem.
2008,
73:
7916
<A NAME="RY02310ST-5E">5e </A>
Ibrahem I.
Zou W.
Xu Y.
Cordova A.
Adv. Synth. Catal.
2006,
348:
211
<A NAME="RY02310ST-5F">5f </A>
Grondal C.
Enders D.
Tetrahedron
2006,
62:
329
<A NAME="RY02310ST-5G">5g </A>
Alcaide B.
Almendros P.
Luna A.
Torres MR.
J. Org. Chem.
2006,
71:
4818
<A NAME="RY02310ST-5H">5h </A>
Cordova A.
Ibrahem I.
Casas J.
Sunden H.
Engqvist M.
Reyes E.
Chem. Eur. J.
2005,
11:
4772
With (dynamic) kinetic resolution:
<A NAME="RY02310ST-5I">5i </A>
Chercheja S.
Nadakudity SK.
Eilbracht P.
Adv.
Synth. Catal.
2010,
352:
637
<A NAME="RY02310ST-5J">5j </A>
Reyes E.
Cordova A.
Tetrahedron Lett.
2005,
46:
6605
Dynamic kinetic resolution with chiral ketone acceptors:
<A NAME="RY02310ST-5K">5k </A>
Wang Y.
Zhang Y.
Chin. J. Chem.
2010,
28:
1267
<A NAME="RY02310ST-5L">5l </A>
Yang J.
Wang T.
Ding Z.
Shen Z.
Zhang Y.
Org. Biomol.
Chem.
2009,
7:
2208
<A NAME="RY02310ST-5M">5m </A>
Wang Y.
Shen Z.
Li B.
Zhang Y.
Zhang Y.
Chem. Commun.
2007,
1284 ; for citations to early examples, see ref.
8a
<A NAME="RY02310ST-6">6 </A> Kinetic resolution of racemic substrates
is equivalent to an enantiotopic-group-selective reaction, i.e.,
groups on enantiomeric substrates are enantiotopic by external comparison.
See:
Mislow K.
Raban M.
Top.
Stereochem.
1967,
1:
1
Reviews on double stereodifferentiation:
<A NAME="RY02310ST-7A">7a </A>
Masamune S.
Choy W.
Petersen JS.
Sita LR.
Angew. Chem., Int. Ed. Engl.
1985,
24:
1
<A NAME="RY02310ST-7B">7b </A>
Kolodiazhnyi OI.
Tetrahedron
2003,
59:
5953
<A NAME="RY02310ST-8A">8a </A>
Ward DE.
Jheengut V.
Akinnusi OT.
Org. Lett.
2005,
7:
1181
<A NAME="RY02310ST-8B">8b </A>
Ward DE.
Jheengut V.
Beye GE.
J. Org. Chem.
2006,
71:
8989
<A NAME="RY02310ST-9">9 </A>
Pellissier H.
Tetrahedron
2008,
64:
1563
<A NAME="RY02310ST-10">10 </A> Review:
Longbottom DA.
Franckevicius V.
Kumarn S.
Oelke AJ.
Wascholowski V.
Ley SV.
Aldrichimica Acta
2008,
41:
3
<A NAME="RY02310ST-11">11 </A>
Little or no aldol adducts were observed
in CHCl3 , MeCN, or THF.
<A NAME="RY02310ST-12">12 </A>
A solution of 5c (2
M in DMF), H2 O (1 equiv), and 6 (0.2 equiv)
at r.t. for 2 d gave a 1:1.1 mixture (by ¹ H
NMR) of 2c and 5c (46% isolated;
dr = 20, ee >95%).
<A NAME="RY02310ST-13">13 </A>
A DMSO solution of (-)-5a , H2 O (8 equiv), and 6 (0.2 equiv) at r.t. for 4 d gave a 1:1.8
mixture (by ¹ H NMR) of (±)-2a and (-)-5a (43% isolated;
dr >20, ee >95%).
<A NAME="RY02310ST-14">14 </A>
After 2 d, a solution of (±)-2b in DMSO containing D2 O (20
equiv) and either 4 or 6 (0.5
equiv) showed >90% deuteration of the α-CH
confirming racemization under these conditions.
<A NAME="RY02310ST-15">15 </A>
We were unable to determine the ee
for 13a .
<A NAME="RY02310ST-16">16 </A>
Subjecting 11a or 11b to the reaction conditions confirmed their
susceptibility to elimination, particularly in the presence of 6 .
<A NAME="RY02310ST-17">17 </A>
Ward DE.
Sales M.
Man CC.
Shen J.
Sasmal PK.
Guo C.
J. Org. Chem.
2002,
67:
1618
Review:
<A NAME="RY02310ST-18A">18a </A>
Steinreiber J.
Faber K.
Griengl H.
Chem. Eur.
J.
2008,
14:
8060
Accordingly, DYKAT involves the overall resolution of racemic
(types I and II) or diastereomeric (types III and IV) mixtures involving interconverting
diastereomeric intermediates (cf. DKR of enantiomeric intermediates).
Type III involves interconversion of diastereomers by epimerization
while in type IV diastereomers are interconverted via achiral intermediates.
We are unaware of previous examples of type III DYKAT via an aldol
reaction. For examples involving DYKAT via aldol-retroaldol
mechanism (type IV), see ref. 5h, 5j, and:
<A NAME="RY02310ST-18B">18b </A>
Yamaguchi A.
Matsunaga S.
Shibasaki M.
J.
Am. Chem. Soc.
2009,
131:
10842
<A NAME="RY02310ST-18C">18c </A>
Steinreiber J.
Schurmann M.
Wolberg M.
van Assema F.
Reisinger C.
Fesko K.
Mink D.
Griengl H.
Angew. Chem. Int. Ed.
2007,
46:
1624
<A NAME="RY02310ST-19A">19a </A>
Evans DA.
Dart MJ.
Duffy JL.
Rieger DL.
J. Am. Chem. Soc.
1995,
117:
9073
<A NAME="RY02310ST-19B">19b </A>
Evans DA.
Dart MJ.
Duffy JL.
Yang MG.
J.
Am. Chem. Soc.
1996,
118:
4322
<A NAME="RY02310ST-20">20 </A>
We were unable to determine the ee
for 17 . ¹ H NMR of the crude
product suggested the possible presence of minor amounts of other
adducts arising from 14 but these could
not be quantified or isolated. The maximum yield of enantiopure 18 from this reaction is 50%.
<A NAME="RY02310ST-21A">21a </A>
Beye GE.
Ward DE.
J.
Am. Chem. Soc.
2010,
132:
7210
<A NAME="RY02310ST-21B">21b </A>
Jheengut V.
Ward DE.
J. Org. Chem.
2007,
72:
7805
<A NAME="RY02310ST-22">22 </A> Compound (±)-5a is also a useful intermediate:
Ward DE.
Gillis HM.
Akinnusi OT.
Rasheed MA.
Saravanan K.
Sasmal PK.
Org. Lett.
2006,
8:
2631
<A NAME="RY02310ST-23A">23a </A>
Izquierdo I.
Plaza MT.
Robles R.
Mota AJ.
Franco F.
Tetrahedron: Asymmetry
2001,
12:
2749
<A NAME="RY02310ST-23B">23b </A>
Shigehisa H.
Mizutani T.
Tosaki S.-Y.
Ohshima T.
Shibasaki M.
Tetrahedron
2005,
61:
5057
<A NAME="RY02310ST-24">24 </A>
Rodriguez B.
Bruckmann A.
Bolm C.
Chem.
Eur. J.
2007,
13:
4710
<A NAME="RY02310ST-25">25 </A>
The mixture is initially homogeneous
but becomes solid as 5a precipitates. Diastereoselectivity
was improved with small amounts of water (2 equiv, dr >20;
0 equiv, dr = 13) but the reaction was
suppressed with larger amounts (ref. 4).
<A NAME="RY02310ST-26">26 </A>
Presumably by increasing the solubility
of 6 and increasing the rate of racemization
of 2a .