Subscribe to RSS
DOI: 10.1055/s-0030-1257051
© Georg Thieme Verlag KG Stuttgart · New York
Antiatherogene Wirkung von High-Density-Lipoproteinen
Publication History
Publication Date:
02 February 2012 (online)

Abstract
The heterogeneous plasma fraction of HDL-cholesterol (HDL-C) is the most important „endogenous negative“ risk factor for coronary artery disease. Although the primary target for therapy remains the reduction of LDL-C, HDL-C raising strategies may offer additional benefit. While prospective clinical studies are under way to test this issue, new pharmaceutical agents are currently being developed to effectively increase plasma HDL-C or improve HDL function. In this review, we discuss the latest developments in the field.
Literatur
- 1
di Angelantonio E, Sarwar N, Perry P et al.
Major lipids, apolipoproteins, and risk of vascular disease.
Jama.
2009;
302
1993-2000
MissingFormLabel
- 2
Baigent C, Blackwell L, Emberson J et al.
Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis
of data from 170,000 participants in 26 randomised trials.
Lancet.
;
376
1670-1681
MissingFormLabel
- 3
Chapman M J, Ginsberg H N, Amarenco P et al.
Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients
at high risk of cardiovascular disease: evidence and guidance for management.
Eur Heart J.
2011;
32
1345-1361
MissingFormLabel
- 4
Rosenson R S, Brewer Jr. H B, Chapman M J et al.
HDL Measures, Particle Heterogeneity, Proposed Nomenclature, and Relation to Atherosclerotic
Cardiovascular Events.
Clin Chem.
2011;
57
392-410
MissingFormLabel
- 5
von Eckardstein A, Hersberger M, Rohrer L.
Current understanding of the metabolism and biological actions of HDL.
Curr Opin Clin Nutr Metab Care.
2005;
8
147-152
MissingFormLabel
- 6
Kontush A, Chapman M J.
Antiatherogenic small, dense HDL--guardian angel of the arterial wall?.
Nat Clin Pract Cardiovasc Med.
2006;
3
144-153
MissingFormLabel
- 7
Oram J F, Vaughan A M.
ATP-Binding cassette cholesterol transporters and cardiovascular disease.
Circ Res.
2006;
99
1031-1043
MissingFormLabel
- 8
de la Llera-Moya M, Drazul-Schrader D, Asztalos B F et al.
The ability to promote efflux via ABCA1 determines the capacity of serum specimens
with similar high-density lipoprotein cholesterol to remove cholesterol from macrophages.
Arterioscler Thromb Vasc Biol.
;
30
796-801
MissingFormLabel
- 9
van Dam M J, de Groot E, Clee S M et al.
Association between increased arterial-wall thickness and impairment in ABCA1-driven
cholesterol efflux: an observational study.
Lancet.
2002;
359
37-42
MissingFormLabel
- 10
Shaw J A, Bobik A, Murphy A et al.
Infusion of reconstituted high-density lipoprotein leads to acute changes in human
atherosclerotic plaque.
Circ Res.
2008;
103
1084-1091
MissingFormLabel
- 11
Yuhanna I S, Zhu Y, Cox B E et al.
High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric
oxide synthase.
Nat Med.
2001;
7
853-857
MissingFormLabel
- 12
Nofer J R, van der Giet M, Tolle M et al.
HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3.
J Clin Invest.
2004;
113
569-581
MissingFormLabel
- 13
Kuvin J T, Patel A R, Sidhu M et al.
Relation between high-density lipoprotein cholesterol and peripheral vasomotor function.
Am J Cardiol.
2003;
92
275-279
MissingFormLabel
- 14
Spieker L E, Sudano I, Hurlimann D et al.
High-density lipoprotein restores endothelial function in hypercholesterolemic men.
Circulation.
2002;
105
1399-1402
MissingFormLabel
- 15
Mackness M I, Arrol S, Abbott C et al.
Protection of low-density lipoprotein against oxidative modification by high-density
lipoprotein associated paraoxonase.
Atherosclerosis.
1993;
104
129-135
MissingFormLabel
- 16
Miura S, Fujino M, Matsuo Y et al.
High density lipoprotein-induced angiogenesis requires the activation of Ras/MAP kinase
in human coronary artery endothelial cells.
Arterioscler Thromb Vasc Biol.
2003;
23
802-808
MissingFormLabel
- 17
Barter P J.
Inhibition of endothelial cell adhesion molecule expression by high density lipoproteins.
Clin Exp Pharmacol Physiol.
1997;
24
286-287
MissingFormLabel
- 18
Tolle M, Pawlak A, Schuchardt M et al.
HDL-associated lysosphingolipids inhibit NAD(P)H oxidase-dependent monocyte chemoattractant
protein-1 production.
Arterioscler Thromb Vasc Biol.
2008;
28
1542-1548
MissingFormLabel
- 19
Gharavi N M, Gargalovic P S, Chang I et al.
High-density lipoprotein modulates oxidized phospholipid signaling in human endothelial
cells from proinflammatory to anti-inflammatory.
Arterioscler Thromb Vasc Biol.
2007;
27
1346-1353
MissingFormLabel
- 20
Levkau B, Hermann S, Theilmeier G et al.
High-density lipoprotein stimulates myocardial perfusion in vivo.
Circulation.
2004;
110
3355-3359
MissingFormLabel
- 21
Theilmeier G, Schmidt C, Herrmann J et al.
High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly
protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid
receptor.
Circulation.
2006;
114
1403-1409
MissingFormLabel
- 22
Khera A V, Cuchel M, de la Llera-Moya M et al.
Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis.
N Engl J Med.
;
364
127-135
MissingFormLabel
- 23
Nobecourt E, Jacqueminet S, Hansel B et al.
Defective antioxidative activity of small dense HDL3 particles in type 2 diabetes:
relationship to elevated oxidative stress and hyperglycaemia.
Diabetologia.
2005;
48
529-538
MissingFormLabel
- 24
Ansell B J, Navab M, Hama S et al.
Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients
from control subjects better than high-density lipoprotein cholesterol levels and
are favorably affected by simvastatin treatment.
Circulation.
2003;
108
2751-2756
MissingFormLabel
- 25
Besler C, Heinrich K, Rohrer L et al.
Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients
with coronary artery disease.
J Clin Invest.
;
121
2693-2708
MissingFormLabel
- 26
Vaisar T, Pennathur S, Green P S et al.
Shotgun proteomics implicates protease inhibition and complement activation in the
antiinflammatory properties of HDL.
J Clin Invest.
2007;
117
746-756
MissingFormLabel
- 27
Pruzanski W, Stefanski E, de Beer F C et al.
Comparative analysis of lipid composition of normal and acute-phase high density lipoproteins.
J Lipid Res.
2000;
41
1035-1047
MissingFormLabel
- 28
Bakogianni M C, Kalofoutis C A, Skenderi K I et al.
Clinical evaluation of plasma high-density lipoprotein subfractions (HDL2, HDL3) in
non-insulin-dependent diabetics with coronary artery disease.
J Diabetes Complications.
2001;
15
265-269
MissingFormLabel
- 29
Cheung M C, Brown B G, Wolf A C et al.
Altered particle size distribution of apolipoprotein A-I-containing lipoproteins in
subjects with coronary artery disease.
J Lipid Res.
1991;
32
383-394
MissingFormLabel
- 30
Zheng L, Nukuna B, Brennan M L et al.
Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and
functional impairment in subjects with cardiovascular disease.
J Clin Invest.
2004;
114
529-541
MissingFormLabel
- 31
Sattler K J, Elbasan S, Keul P et al.
Sphingosine 1-phosphate levels in plasma and HDL are altered in coronary artery disease.
Basic Res Cardiol.
;
105
821-832
MissingFormLabel
- 32
Wilson P W, D'Agostino R B, Levy D et al.
Prediction of coronary heart disease using risk factor categories.
Circulation.
1998;
97
1837-1847
MissingFormLabel
- 33
Assmann G, Cullen P, Schulte H.
Simple scoring scheme for calculating the risk of acute coronary events based on the
10-year follow-up of the prospective cardiovascular Munster (PROCAM) study.
Circulation.
2002;
105
310-315
MissingFormLabel
- 34
Thomsen T F, Davidsen M, Ibsen H et al.
A new method for CHD prediction and prevention based on regional risk scores and randomized
clinical trials; PRECARD and the Copenhagen Risk Score.
J Cardiovasc Risk.
2001;
8
291-297
MissingFormLabel
- 35
Tunstall-Pedoe H, Woodward M.
By neglecting deprivation, cardiovascular risk scoring will exacerbate social gradients
in disease.
Heart.
2006;
92
307-310
MissingFormLabel
- 36
Graham I, Atar D, Borch-Johnsen K et al.
European guidelines on cardiovascular disease prevention in clinical practice: executive
summary. Fourth Joint Task Force of the European Society of Cardiology and other societies
on cardiovascular disease prevention in clinical practice (constituted by representatives
of nine societies and by invited experts).
Eur J Cardiovasc Prev Rehabil.
2007;
14 (Suppl 2)
1-40
MissingFormLabel
- 37
Gordon T, Castelli W P, Hjortland M C et al.
High density lipoprotein as a protective factor against coronary heart disease. The
Framingham Study.
Am J Med.
1977;
62
707-714
MissingFormLabel
- 38
Sharrett A R, Ballantyne C M, Coady S A et al.
Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides,
lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions: The Atherosclerosis
Risk in Communities (ARIC) Study.
Circulation.
2001;
104
1108-1113
MissingFormLabel
- 39
Pletcher M J, Bibbins-Domingo K, Liu K et al.
Nonoptimal lipids commonly present in young adults and coronary calcium later in life:
the CARDIA (Coronary Artery Risk Development in Young Adults) study.
Ann Intern Med.
;
153
137-146
MissingFormLabel
- 40
Castelli W P, Doyle J T, Gordon T et al.
HDL cholesterol and other lipids in coronary heart disease. The cooperative lipoprotein
phenotyping study.
Circulation.
1977;
55
767-772
MissingFormLabel
- 41
Alber H F, Wanitschek M M, de Waha S et al.
High-density lipoprotein cholesterol, C-reactive protein, and prevalence and severity
of coronary artery disease in 5641 consecutive patients undergoing coronary angiography.
Eur J Clin Invest.
2008;
38
372-380
MissingFormLabel
- 42
Gordon D J, Probstfield J L, Garrison R J et al.
High-density lipoprotein cholesterol and cardiovascular disease. Four prospective
American studies.
Circulation.
1989;
79
8-15
MissingFormLabel
- 43
Kreuzer J.
Medikamentöse Therapie von Fettstoffwechselstörungen.
Arzneimitteltherapie.
2011;
29
13-22
MissingFormLabel
- 44 Neurologie DGf. Primär- und Sekundärprävention der zerebralen Ischämie. In: Diener H C, Putzki N Leitlinien für die Diagnostik und Therapie in der Neurologie. 4. überarb. Aufl. Stuttgart: Georg Thieme Verlag; 2008
MissingFormLabel
- 45 Böhner H, Balzer K, Nowak T. Leitlinie Medikamentöse Therapie. 2008. http://www.gefaesschirurgie.de/fileadmin/websites/dgg/download/LL_Medikamentoese_Therapie_2011.pdf.14.11.2011
MissingFormLabel
- 46
Drexel H, Amann F W, Rentsch K et al.
Relation of the level of high-density lipoprotein subfractions to the presence and
extent of coronary artery disease.
Am J Cardiol.
1992;
70
436-440
MissingFormLabel
- 47
Rossner S, Kjellin K G, Mettinger K L et al.
Normal serum-cholesterol but low H.D.L.-cholesterol concentration in young patients
with ischaemic cerebrovascular disease.
Lancet.
1978;
1
577-579
MissingFormLabel
- 48
Pauciullo P, Rubba P, Marotta G et al.
Abnormalities in serum lipoprotein composition in patients with premature coronary
heart disease compared to serum lipid matched controls.
Atherosclerosis.
1988;
73
241-246
MissingFormLabel
- 49
Jenkins P J, Harper R W, Nestel P J.
Severity of coronary atherosclerosis related to lipoprotein concentration.
Br Med J.
1978;
2
388-391
MissingFormLabel
- 50
Phan B A, Chu B, Polissar N et al.
Association of high-density lipoprotein levels and carotid atherosclerotic plaque
characteristics by magnetic resonance imaging.
Int J Cardiovasc Imaging.
2007;
23
337-342
MissingFormLabel
- 51
Berge K G, Canner P L, Hainline A.
High-density lipoprotein cholesterol and prognosis after myocardial infarction.
Circulation.
1982;
66
1176-1178
MissingFormLabel
- 52
Ghazzal Z B, Dhawan S S, Sheikh A et al.
Usefulness of serum high-density lipoprotein cholesterol level as an independent predictor
of one-year mortality after percutaneous coronary interventions.
Am J Cardiol.
2009;
103
902-906
MissingFormLabel
- 53
Amarenco P, Goldstein L B, Callahan A et al.
Baseline blood pressure, low- and high-density lipoproteins, and triglycerides and
the risk of vascular events in the Stroke Prevention by Aggressive Reduction in Cholesterol
Levels (SPARCL) trial.
Atherosclerosis.
2009;
204
515-520
MissingFormLabel
- 54
von Birgelen C, Hartmann M, Mintz G S et al.
Relation between progression and regression of atherosclerotic left main coronary
artery disease and serum cholesterol levels as assessed with serial long-term (> or = 12
months) follow-up intravascular ultrasound.
Circulation.
2003;
108
2757-2762
MissingFormLabel
- 55
Jafri H, Alsheikh-Ali A A, Karas R H.
Meta-analysis: statin therapy does not alter the association between low levels of
high-density lipoprotein cholesterol and increased cardiovascular risk.
Ann Intern Med.
2010;
153
800-808
MissingFormLabel
- 56
Wolfram R M, Brewer H B, Xue Z et al.
Impact of low high-density lipoproteins on in-hospital events and one-year clinical
outcomes in patients with non-ST-elevation myocardial infarction acute coronary syndrome
treated with drug-eluting stent implantation.
Am J Cardiol.
2006;
98
711-717
MissingFormLabel
- 57
Sattler K J, Herrmann J, Yun S et al.
High high-density lipoprotein-cholesterol reduces risk and extent of percutaneous
coronary intervention-related myocardial infarction and improves long-term outcome
in patients undergoing elective percutaneous coronary intervention.
Eur Heart J.
2009;
30
1894-1902
MissingFormLabel
- 58
Foody J M, Ferdinand F D, Pearce G L et al.
HDL cholesterol level predicts survival in men after coronary artery bypass graft
surgery: 20-year experience from The Cleveland Clinic Foundation.
Circulation.
2000;
102 III
90-94
MissingFormLabel
- 59
Barter P, Gotto A M, LaRosa J C et al.
HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events.
N Engl J Med.
2007;
357
1301-1310
MissingFormLabel
- 60
Ballantyne C M, Raichlen J S, Nicholls S J et al.
Effect of rosuvastatin therapy on coronary artery stenoses assessed by quantitative
coronary angiography: a study to evaluate the effect of rosuvastatin on intravascular
ultrasound-derived coronary atheroma burden.
Circulation.
2008;
117
2458-2466
MissingFormLabel
- 61
Robins S J, Collins D, Wittes J T et al.
Relation of gemfibrozil treatment and lipid levels with major coronary events: VA-HIT:
a randomized controlled trial.
Jama.
2001;
285
1585-1591
MissingFormLabel
- 62
Villines T C, Stanek E J, Devine P J et al.
The ARBITER 6-HALTS Trial (Arterial Biology for the Investigation of the Treatment
Effects of Reducing Cholesterol 6-HDL and LDL Treatment Strategies in Atherosclerosis):
final results and the impact of medication adherence, dose, and treatment duration.
J Am Coll Cardiol.
2010;
55
2721-2726
MissingFormLabel
- 63
Fox K, Garcia M A, Ardissino D et al.
Guidelines on the management of stable angina pectoris: executive summary: The Task
Force on the Management of Stable Angina Pectoris of the European Society of Cardiology.
Eur Heart J.
2006;
27
1341-1381
MissingFormLabel
- 64
Poss J, Bohm M, Laufs U.
HDL and CETP in atherogenesis.
Dtsch Med Wochenschr.
2010;
135
188-192
MissingFormLabel
- 65
Grover S A, Kaouache M, Joseph L et al.
Evaluating the incremental benefits of raising high-density lipoprotein cholesterol
levels during lipid therapy after adjustment for the reductions in other blood lipid
levels.
Arch Intern Med.
2009;
169
1775-1780
MissingFormLabel
- 66
Goldenberg I, Benderly M, Sidi R et al.
Relation of clinical benefit of raising high-density lipoprotein cholesterol to serum
levels of low-density lipoprotein cholesterol in patients with coronary heart disease
(from the Bezafibrate Infarction Prevention Trial).
Am J Cardiol.
2009;
103
41-45
MissingFormLabel
- 67
Durstine J L, Grandjean P W, Davis P G et al.
Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis.
Sports Med.
2001;
31
1033-1062
MissingFormLabel
- 68
Kiens B, Jorgensen I, Lewis S et al.
Increased plasma HDL-cholesterol and apo A-1 in sedentary middle-aged men after physical
conditioning.
Eur J Clin Invest.
1980;
10
203-209
MissingFormLabel
- 69
Dolgin E.
Trial puts niacin-and cholesterol dogma-in the line of fire.
Nat Med.
2011;
17
756
MissingFormLabel
- 70
Alsheikh-Ali A A, Lin J L, Abourjaily P et al.
Prevalence of low high-density lipoprotein cholesterol in patients with documented
coronary heart disease or risk equivalent and controlled low-density lipoprotein cholesterol.
Am J Cardiol.
2007;
100
1499-1501
MissingFormLabel
- 71
Shepherd J, Packard C J, Patsch J R et al.
Effects of nicotinic acid therapy on plasma high density lipoprotein subfraction distribution
and composition and on apolipoprotein A metabolism.
J Clin Invest.
1979;
63
858-867
MissingFormLabel
- 72
Wu Z H, Zhao S P.
Niacin promotes cholesterol efflux through stimulation of the PPARgamma-LXRalpha-ABCA1
pathway in 3T3-L1 adipocytes.
Pharmacology.
2009;
84
282-287
MissingFormLabel
- 73
Tunaru S, Kero J, Schaub A et al.
PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect.
Nat Med.
2003;
9
352-355
MissingFormLabel
- 74
Shepherd J, Betteridge J, Van Gaal L.
Nicotinic acid in the management of dyslipidaemia associated with diabetes and metabolic
syndrome: a position paper developed by a European Consensus Panel.
Curr Med Res Opin.
2005;
21
665-682
MissingFormLabel
- 75
Insull W, McGovern M E, Schrott H et al.
Efficacy of extended-release niacin with lovastatin for hypercholesterolemia: assessing
all reasonable doses with innovative surface graph analysis.
Arch Intern Med.
2004;
164
1121-1127
MissingFormLabel
- 76
Parhofer K G.
Review of extended-release niacin/laropiprant fixed combination in the treatment of
mixed dyslipidemia and primary hypercholesterolemia.
Vasc Health Risk Manag.
2009;
5
901-908
MissingFormLabel
- 77
Brown B G, Zhao X Q, Chait A et al.
Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention
of coronary disease.
N Engl J Med.
2001;
345
1583-1592
MissingFormLabel
- 78
Taylor A J, Lee H J, Sullenberger L E.
The effect of 24 months of combination statin and extended-release niacin on carotid
intima-media thickness: ARBITER 3.
Curr Med Res Opin.
2006;
22
2243-2250
MissingFormLabel
- 79
Clofibrate and niacin in coronary heart disease.
Jama.
1975;
231
360-381
MissingFormLabel
- 80
Canner P L, Furberg C D, Terrin M L et al.
Benefits of niacin by glycemic status in patients with healed myocardial infarction
(from the Coronary Drug Project).
Am J Cardiol.
2005;
95
254-257
MissingFormLabel
- 81
Bruckert E, Labreuche J, Amarenco P.
Meta-analysis of the effect of nicotinic acid alone or in combination on cardiovascular
events and atherosclerosis.
Atherosclerosis.
2010;
210
353-361
MissingFormLabel
- 82
Wise J.
Trial of niacin alongside statin is stopped early.
BMJ.
2011;
342
D3400
MissingFormLabel
- 83
Marx N, Duez H, Fruchart J C et al.
Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene
expression in vascular cells.
Circ Res.
2004;
94
1168-1178
MissingFormLabel
- 84
Lalloyer F, Staels B.
Fibrates, glitazones, and peroxisome proliferator-activated receptors.
Arterioscler Thromb Vasc Biol.
2010;
30
894-899
MissingFormLabel
- 85
Manninen V, Tenkanen L, Koskinen P et al.
Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations
on coronary heart disease risk in the Helsinki Heart Study. Implications for treatment.
Circulation.
1992;
85
37-45
MissingFormLabel
- 86
Sacks F M, Carey V J, Fruchart J C.
Combination lipid therapy in type 2 diabetes.
N Engl J Med.
2010;
363
692-694
(author reply 694–695)
MissingFormLabel
- 87
Athyros V G, Papageorgiou A A, Athyrou V V et al.
Atorvastatin and micronized fenofibrate alone and in combination in type 2 diabetes
with combined hyperlipidemia.
Diabetes Care.
2002;
25
1198-1202
MissingFormLabel
- 88
Derosa G, Cicero A E, Bertone G et al.
Comparison of fluvastatin + fenofibrate combination therapy and fluvastatin monotherapy
in the treatment of combined hyperlipidemia, type 2 diabetes mellitus, and coronary
heart disease: a 12-month, randomized, double-blind, controlled trial.
Clin Ther.
2004;
26
1599-1607
MissingFormLabel
- 89
Koh K K, Quon M J, Han S H et al.
Additive beneficial effects of fenofibrate combined with atorvastatin in the treatment
of combined hyperlipidemia.
J Am Coll Cardiol.
2005;
45
1649-1653
MissingFormLabel
- 90
Grundy S M, Vega G L, Yuan Z et al.
Effectiveness and tolerability of simvastatin plus fenofibrate for combined hyperlipidemia
(the SAFARI trial).
Am J Cardiol.
2005;
95
462-468
MissingFormLabel
- 91
Ginsberg H N, Elam M B, Lovato L C et al.
Effects of combination lipid therapy in type 2 diabetes mellitus.
N Engl J Med.
;
362
1563-1574
MissingFormLabel
- 92
Dormandy J A, Charbonnel B, Eckland D J et al.
Secondary prevention of macrovascular events in patients with type 2 diabetes in the
PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events):
a randomised controlled trial.
Lancet.
2005;
366
1279-1289
MissingFormLabel
- 93
Nissen S E, Nicholls S J, Wolski K et al.
Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis
in patients with type 2 diabetes: the PERISCOPE randomized controlled trial.
Jama.
2008;
299
1561-1573
MissingFormLabel
- 94
Lincoff A M, Wolski K, Nicholls S J et al.
Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus:
a meta-analysis of randomized trials.
Jama.
2007;
298
1180-1188
MissingFormLabel
- 95
Henry R R, Lincoff A M, Mudaliar S et al.
Effect of the dual peroxisome proliferator-activated receptor-alpha/gamma agonist
aleglitazar on risk of cardiovascular disease in patients with type 2 diabetes (SYNCHRONY):
a phase II, randomised, dose-ranging study.
Lancet.
2009;
374
126-135
MissingFormLabel
- 96
deGoma E M, Leeper N J, Heidenreich P A.
Clinical significance of high-density lipoprotein cholesterol in patients with low
low-density lipoprotein cholesterol.
J Am Coll Cardiol.
2008;
51
49-55
MissingFormLabel
- 97
van der Steeg W A, Holme I, Boekholdt S M et al.
High-density lipoprotein cholesterol, high-density lipoprotein particle size, and
apolipoprotein A-I: significance for cardiovascular risk: the IDEAL and EPIC-Norfolk
studies.
J Am Coll Cardiol.
2008;
51
634-642
MissingFormLabel
- 98
Asztalos B F, Horvath K V, McNamara J R et al.
Comparing the effects of five different statins on the HDL subpopulation profiles
of coronary heart disease patients.
Atherosclerosis.
2002;
164
361-369
MissingFormLabel
- 99
Asztalos B F, Collins D, Horvath K V et al.
Relation of gemfibrozil treatment and high-density lipoprotein subpopulation profile
with cardiovascular events in the Veterans Affairs High-Density Lipoprotein Intervention
Trial.
Metabolism.
2008;
57
77-83
MissingFormLabel
- 100
Otvos J D, Collins D, Freedman D S et al.
Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary
events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density
Lipoprotein Intervention Trial.
Circulation.
2006;
113
1556-1563
MissingFormLabel
- 101
Vasan R S, Pencina M J, Robins S J et al.
Association of circulating cholesteryl ester transfer protein activity with incidence
of cardiovascular disease in the community.
Circulation.
2009;
120
2414-2420
MissingFormLabel
- 102
Chapman M J, Le Goff W, Guerin M et al.
Cholesteryl ester transfer protein: at the heart of the action of lipid-modulating
therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors.
Eur Heart J.
2010;
31
149-164
MissingFormLabel
- 103
Barter P J, Caulfield M, Eriksson M et al.
Effects of torcetrapib in patients at high risk for coronary events.
N Engl J Med.
2007;
357
2109-2122
MissingFormLabel
- 104
Hu X, Dietz J D, Xia C et al.
Torcetrapib induces aldosterone and cortisol production by an intracellular calcium-mediated
mechanism independently of cholesteryl ester transfer protein inhibition.
Endocrinology.
2009;
150
2211-2219
MissingFormLabel
- 105
Forrest M J, Bloomfield D, Briscoe R J et al.
Torcetrapib-induced blood pressure elevation is independent of CETP inhibition and
is accompanied by increased circulating levels of aldosterone.
Br J Pharmacol.
2008;
154
1465-1473
MissingFormLabel
- 106
Cannon C P, Shah S, Dansky H M et al.
Safety of anacetrapib in patients with or at high risk for coronary heart disease.
N Engl J Med.
2010;
363
2406-2415
MissingFormLabel
- 107
Yvan-Charvet L, Kling J, Pagler T et al.
Cholesterol efflux potential and antiinflammatory properties of high-density lipoprotein
after treatment with niacin or anacetrapib.
Arterioscler Thromb Vasc Biol.
2010;
30
1430-1438
MissingFormLabel
- 108
Olsson A G, Schwartz G G, Szarek M et al.
High-density lipoprotein, but not low-density lipoprotein cholesterol levels influence
short-term prognosis after acute coronary syndrome: results from the MIRACL trial.
Eur Heart J.
2005;
26
890-896
MissingFormLabel
- 109
Tardif J C, Gregoire J, L"Allier P L et al.
Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis:
a randomized controlled trial.
Jama.
2007;
297
1675-1682
MissingFormLabel
- 110
Nicholls S J, Tuzcu E M, Sipahi I et al.
Relationship between atheroma regression and change in lumen size after infusion of
apolipoprotein A-I Milano.
J Am Coll Cardiol.
2006;
47
992-997
MissingFormLabel
- 111
Nissen S E, Tsunoda T, Tuzcu E M et al.
Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute
coronary syndromes: a randomized controlled trial.
Jama.
2003;
290
2292-2300
MissingFormLabel
- 112
Patel S, Drew B G, Nakhla S et al.
Reconstituted high-density lipoprotein increases plasma high-density lipoprotein anti-inflammatory
properties and cholesterol efflux capacity in patients with type 2 diabetes.
J Am Coll Cardiol.
2009;
53
962-971
MissingFormLabel
- 113
Chenevard R, Hurlimann D, Spieker L et al.
RESEARCH:Reconstituted HDL in Acute Coronary Syndromes.
Cardiovasc Ther.
2010;
DOI: doi: 10.1111/j.1755-5922.2010.00221.X.
[Epub ahead of print]
MissingFormLabel
- 114
Navab M, Anantharamaiah G M, Reddy S T et al.
Peptide Mimetics of Apolipoproteins Improve HDL Function.
J Clin Lipidol.
2007;
1
142-147
MissingFormLabel
- 115
D'Souza W, Stonik J A, Murphy A et al.
Structure/function relationships of apolipoprotein a-I mimetic peptides: implications
for antiatherogenic activities of high-density lipoprotein.
Circ Res.
2010;
107
217-227
MissingFormLabel
- 116
Hillier T A, Fagot-Campagna A, Eschwège E et al.
Weight change and changes in the metabolic syndrome as the French population moves
towards overweight: the D.E S.I.R. cohort.
Int J Epidemiol.
2006;
35
190-196
MissingFormLabel
- 117
Mooradian A D, Haas M J, Wehmeier K R et al.
Obesity-related changes in high-density lipoprotein metabolism.
Obesity.
2008;
16
1152-1160
MissingFormLabel
- 118
Sirpal S.
Myeloperoxidase-mediated lipoprotein carbamylation as a mechanistic pathway for atherosclerotic
vascular disease.
Clin Sci.
2009;
116
681-695
MissingFormLabel
- 119
Shao B, Oda M N, Oram J F et al.
Myeloperoxidase: an oxidative pathway for generating dysfunctional high-density lipoprotein.
Chem Res Toxicol.
2010;
23
447-454
MissingFormLabel
- 120
Williams P T, Blanche P J, Krauss R M.
Behavioral versus genetic correlates of lipoproteins and adiposity in identical twins
discordant for exercise.
Circulation.
2005;
112
350-356
MissingFormLabel
- 121
Ahmad T, Chasman D I, Buring J E et al.
Physical activity modifies the effect of LPL, LIPC, and CETP polymorphisms on HDL-C
levels and the risk of myocardial infarction in women of European ancestry.
Circ Cardiovasc Genet.
2011;
4
74-80
MissingFormLabel
- 122
Mozaffarian D, Aro A, Willet W C.
Health effects of trans-fatty acids: experimental and observational evidence.
Eur J Clin Nutr.
2009;
63(2)
S5-S21
MissingFormLabel
- 123
Rapp R J.
Hypertriglyceridemia: a review beyond low-density lepoprotein.
Cardiol Rev.
2002;
10
163-172
MissingFormLabel
- 124
Oram J F, Heinecke J W.
ATP-binding cassette transporter A1: a ceII cholesterol exporter that protects against
cardiovascular disease.
Physiol Rev.
2005;
85
1343-1372
MissingFormLabel
- 125
Schaefer E J, Santos R D, Asztalos B F.
Marked HDL deficiency and premature coronary heart disease.
Curr Opin Lipidol.
2010;
21
289-297
MissingFormLabel
- 126
Hovingh G K, Brownlie A, Bisoendial R J et al.
A novel apoA-I mutation (L178P) leads to endothelial dysfunction, increased arterial
wall thickness, and primature coronary artery disease.
J AM Coll Cardiol.
2004;
44
1429-1435
MissingFormLabel
- 127
Miller M, Zhan M.
Genetic determinants of low high-density lipoprotein cholesterol.
Curr Opin Cardiol.
2004;
19
380-384
MissingFormLabel
- 128
Pocovi M, Cenarro A, Civeira F et al.
Beta-glucocerebrosidase gene locus as a link for Gaucher’s disease and familial hypo-alpha-lipoproteinaemia.
Lancet.
1998;
351
1919-1923
MissingFormLabel
Univ.-Prof. Dr. med. Bodo Levkau
Institut für Pathophysiologie
Zentrum für Innere Medizin
Universitätsklinikum Essen
Hufelandstraße 55
45122 Essen
Phone: 0201/723–4414
Email: levkau@uni-essen.de