Krankenhaushygiene up2date 2011; 6(2): 117-132
DOI: 10.1055/s-0030-1256457
Technische und bauliche Aspekte

© Georg Thieme Verlag KG Stuttgart · New York

Präventions- und Sanierungsmaßnahmen bei der Legionellenbesiedlung von Wassersystemen

Martin  Scherrer
Further Information

Publication History

Publication Date:
11 May 2011 (online)

Kernaussagen

  • Zur Prophylaxe und Sanierung von Trinkwasserleitungssystemen sind verschiedene chemische und physikalische Methoden wirksam. Die chemischen Verfahren umfassen die Desinfektion mit Chlor, Chlordioxid, Monochloramin und Ozon. Bei den physikalischen Desinfektionsverfahren eignen sich thermische Desinfektion, Kupfer- bzw. Silberionisation, UV-Desinfektion sowie Sterilfiltration mit entsprechenden Filtersystemen.

  • Keine der Methoden kann eine vollständige Sicherheit bieten.

  • Für alle Maßnahmen sind die Rahmenbedingungen zu prüfen, insbesondere die Einhaltung der Grenzwerte der Trinkwasserverordnung, aber auch Rekolonisationsintervalle oder z. B. Materialverschleiß.

  • Bei Neu- und Umbauten sind eine Vielzahl von Maßnahmen sinnvoll und notwendig, wie z. B. Vermeidung von stagnierendem Wasser, Einbau geeigneter Materialien sowie die Einhaltung von Richtwerten durch Vorabkontrolle und Beprobung.

  • Kühltürme und Rückkühlwerke müssen bei der Legionellenprophylaxe ebenfalls beachtet werden. Sie sind regelmäßig fachgerecht zu reinigen und zu desinfizieren bzw. prophylaktisch zu behandeln.

Literatur

  • 1 Verordnung über die Qualität von Wasser für den menschlichen Gebrauch (Trinkwasserverordnung – TrinkW 2001) vom 21. Mai 2001 (BGBl. I S. 959) zuletzt geändert am 31. Oktober 2006 (BGBl. I S.2407). 
  • 2 Umweltbundesamt .Liste der Aufbereitungsstoffe und Desinfektionsverfahren gemäß § 11 Trinkwasserverordnung 2001. http://www.umweltbundesamt.de/wasser/themen/downloads/trinkwasser/trink11.pdf Stand: Dezember 2010.
  • 3 Emmerson A M. Emerging waterborne infections in health-care settings.  Emerging Infectious Diseases. 2001;  7 272-276
  • 4 Muraca P W, Yu V L, Goetz A. Disinfection of water distribution systems for Legionella: a review of application procedures and methodologies.  Infect Control Hosp Epidemiol. 1990;  11 79-88
  • 5 Snyder M B, Siwicki M, Wireman J et al. Reduction in Legionella pneumophila through heat flushing followed by continuous supplemental chlorination of hospital hot water.  J Infect Dis. 1990;  162 127-132
  • 6 Mead P B, Lawson J M, Patterson J W. Chlorination of water supplies to control Legionella may corrode the pipes.  J Am Med Assoc. 1988;  260 2216
  • 7 Marchesi I, Marchegiano P, Bargellini A et al. Effectiveness of different methods to control Legionella in the water supply: ten-year experience in an Italian university hospital.  J Hosp Infect. 2011;  77 47-51
  • 8 Cooper I R, Hanlon G W. Resistance of Legionella pneumophila serotype 1 biofilms to chlorine-based disinfection.  J Hosp Infect. 2010;  74 152-159
  • 9 Exner M, Kramer A, Lajoie L et al. Prevention and control of health care-associated waterborne infections in health care facilities.  Am J Infect Control. 2005;  33 26-S40
  • 10 Hambidge A. Reviewing efficacy of alternative water treatment techniques.  Health Estate. 2001;  55 23-25
  • 11 Helms C M, Massanari M, Wenzel R P. Legionnaires’ disease associated with a hospital water system.  J Am Med Assoc. 1988;  16 2423-2427
  • 12 Sabria M, Yu V L. Hospital-acquired legionellosis: solutions for a preventable infection.  Lancet Infect Dis. 2002;  2 368-373
  • 13 Zhang Z, McCann C, Stout J E et al. Safety and efficacy of chlorine dioxide for Legionella control in a hospital water system.  Infect Control Hosp Epidemiol. 2007;  28 1009-1012
  • 14 Sidari I II, Stout J E, Vanbriesen J M et al. Keeping Legionella out of water systems.  J Am Water Works Assoc. 2004;  96 111-119
  • 15 Srinivasan A, Bova G, Ross T et al. A 17-month evaluation of a chlorine dioxide water treatment system to control Legionella species in a hospital water supply.  Infect Control Hosp Epidemiol. 2003;  24 575-579
  • 16 Hamilton E, Seal D V, Hay J. Comparison of chlorine and chlorine dioxide disinfection for control of Legionella in a hospital potable water supply.  J Hosp Infect. 1996;  32 156-160
  • 17 Walker J T, Mackerness C W, Mallon D et al. Control of Legionella pneumophila in a hospital water system by chlorine dioxide.  J Ind Microbiol. 1995;  15 384-390
  • 18 Hosein I K, Hill D W, Tan T Y et al. Point-of-care controls for nosocomial legionellosis combined with chlorine dioxide potable water decontamination: a two-year survey at a Welsh teaching hospital.  J Hosp Infection. 2005;  61 100-106
  • 19 Stevens A A. Reaction products of chlorine dioxide.  Environ Health Perspect. 1982;  46 101-110
  • 20 Flannery B, Gelling L B, Vugia D J et al. Reducing Legionella colonization of water systems with monochloramine.  Emerg Infect Dis. 2006;  12 588-596
  • 21 Heffelfinger J D, Kool JL, Fridkin S et al. Risk of hospital-acquired Legionnaires’ disease in cities using monochloramine versus other water disinfectants.  Infect Control Hosp Epidemiol. 2003;  24 569-574
  • 22 Kool J L, Carpenter J C, Fields B S. Effect of monochloramine disinfection of municipal drinking water on risk of nosocomial Legionnaires’ disease.  Lancet. 1999;  353 272-277
  • 23 Muraca P, Stout J E, Yu V L. Comparative assessment of chlorine, heat, ozone, and UV light for killing Legionella pneumophila within a model plumbing system.  Appl Environ Microbiol. 1987;  53 447-453
  • 24 Blanc D S, Carrara P h, Zanetti G, Francioli P. Water disinfection with ozone, copper and silver ions, and temperature increase to control Legionella: seven years of experience in a university teaching hospital.  J Hosp Infect. 2005;  60 69-72
  • 25 Edelstein P H, Whittaker R E, Kreiling R L et al. Efficacy of ozone in eradication of Legionella pneumophila from hospital plumbing fixtures.  Appl Environ Microbiol. 1982;  44 1330-1334
  • 26 Kramer A, Pitten F-A, Rudolph P, Weber U. Thermische Desinfektion – werden alle Legionellen erfasst?.  IHKS-Fachjournal. 2005;  6 28-32
  • 27 Peiró Callizo E F, Darpón Sierra J, Santos Pombo JM et al. Evaluation of the effectiveness of the Pastormaster method for disinfection of legionella in a hospital water distribution system.  J Hosp Infect. 2005;  60 150-158
  • 28 Ruef C, Francioli P. Prävention der nosokomialen Legionelleninfektion.  Swiss-Noso. 1997;  4 9-12
  • 29 Schulze-Röbbecke R, Jung K D, Pullmann H, Hundgeburth J. Sanierung eines mit Legionella pneumophila kontaminierten Krankenhaus-Warmwassersystems.  Zentralbl Hyg Umweltmed. 1990;  190 84-100
  • 30 Deutsche Vereinigung des Gas-und Wasserfaches e. V. (DVGW) .Arbeitsblatt W 551 Trinkwassererwärmungs- und Trinkwasserleitungsanlagen: Technische Maßnahmen zur Verminderung des Legionellenwachstums; Planung, Errichtung, Betrieb und Sanierung von Trinkwasser-Installationen. Bonn: DVGW; 2004
  • 31 Vickers R M, Yu V L, Hanna S S et al. Determinations of Legionella pneumophila contamination of water distribution systems: 15-Hospital prospective study.  Infect Contr. 1987;  8 357-363
  • 32 Oliveira M S, Maximo F R, Lobo R D et al. Disconnecting central hot water and using electric showers to avoid colonization of the water system by Legionella pneumophila. An 11-year study.  J Hosp Infect. 2007;  66 327-331
  • 33 Casari E, Ferrario A, Montanelli A. Prolonged effect of two combined methods for Legionella disinfection in a hospital water system.  Ann Ig. 2007;  19 525-532
  • 34 Eckmanns T, Lück C, Rüden H, Weist K. Prävention nosokomialer Legionellosen.  Deutsches Ärzteblatt. 2006;  103 A1294-A1300
  • 35 Chen Y, Liu Y, Lee S et al. Abbreviated duration of superheat-and-flush and disinfection of taps for Legionella disinfection: Lessons learned from failure.  Am J Infect Control. 2005;  33 606-610
  • 36 Haas R. Legionellen.  GWA. 2003;  1 15-24
  • 37 Darelid J, Löfgren S, Malmvall B-E. Control of nosocomial Legionnaires’ disease by keeping the circulating hot water temperature above 55°C: experience from a 10-year surveillance programme in a district general hospital.  J Hosp Infect. 2002;  50 213-219
  • 38 Stout J E, Lin Y, Goetz A M, Muder R R. Controlling Legionella in hospital water systems: experience with the superheat-and-flush method and copper-silver ionization.  Infect Control Hosp Epidemiol. 1998;  19 911-914
  • 39 Linde H-J, Hengerer A, Voggelsberger E et al. Sanierung von Warmwassersystemen mit Legionellenbefall – Dokumentation eigener Erfahrungen mit thermischer Desinfektion.  Zbl Hyg. 1995;  197 441-451
  • 40 Wagenvoort J HT, Sijstermans M LH. From legionnaire to guerrilla combatant: suppression of Legionella pneumophila in a hospital cold water supply.  J Hosp Infect. 2004;  58 162-163
  • 41 Chen Y S, Lin Y E, Liu Y C et al. Efficacy of point-of-entry copper-silver ionisation system in eradicating Legionella pneumophila in a tropical tertiary care hospital: implications for hospitals contaminated with Legionella in both hot and cold water.  J Hosp Infect. 2008;  68 152-158
  • 42 Mòdol J, Sabrià M, Reynaga E et al. Hospital-acquired Legionnaires’ disease in a university hospital: impact of the copper-silver ionization system.  CID. 2007;  44 263-265
  • 43 Biurrun A, Caballero L, Pelaz C et al. Treatment of a Legionella pneumophila-colonized water distribution system using copper-silver ionization and continuous chlorination.  Infect Control Hosp Epidemiol. 1999;  20 426-428
  • 44 Rohr U, Senger M, Selenka F et al. Four years of experience with silver-copper ionization for control of Legionella in a German university hospital hot water plumbing system.  Clin Infect Dis. 1999;  29 1507-1511
  • 45 Selenka F, Rohr U, Völker M. Untersuchungen zur Dekolonisation eines legionellenbelasteten Warmwasserkreislaufs in einem Krankenhaus unter Einsatz des Tarn-Pure-Verfahrens.  Hyg Med. 1995;  20 292-302
  • 46 Cachafeiro S P, Naveira I M, Garcia I G. Is copper-silver ionisation safe and effective in controlling legionella?.  J Hosp Infect. 2007;  67 209-216
  • 47 Rohr U, Matthys W, Junge-Matthys E, Pleischl S. Legionellenreduktion in Trinkwasser-Anlagen durch Ag-/Cu-Ionisation – Erfahrungsberichte und Stellungnahme aus drei Hygieneinstituten.  Hygiene und Mikrobiol. 1998;  3 82-85
  • 48 Stout J E, Yu V L. Experience of the first 16 hospitals using copper-silver ionization for Legionella control: implications for the evaluation of other disinfection modalities.  Infect Control Hosp Epidemiol. 2003;  24 563-568
  • 49 Miuetzner S, Schwille R C, Farley A. Efficacy of thermal treatment and copper-silver ionization for controlling Legionella pneumophila in high-volume hot water plumbing systems in hospitals.  Am J Infect Control. 1997;  25 452-457
  • 50 Hambidge A. Reviewing efficacy of alternative water treatment techniques – part 2.  water treatment Health Estate.. 2001;  55 24-26
  • 51 Lin Y, Vidic R D, Stout J E, Yu V L. Negative effect of high pH on biocidal efficacy of copper and silver ions in controlling Legionella pneumophila.  Appl Environ Microbiol. 2002;  68 2711-2715
  • 52 Kusnetsov J, Iivanainen E, Elomaa N et al. Copper and silver ions more effective against legionellae than against mycobacteria in a hospital warm water system.  Water Research. 2001;  35 4217-4225
  • 53 Hall K K, Gianetta E T, Getchell-White S I et al. Ultraviolet light disinfection of hospital water for preventing nosocomial Legionella infection: A 13-year follow-up.  Infect Control Hosp Epidemiol. 2003;  24 580-583
  • 54 Triassi M, di Popolo A, Ribera D'Alcalà  G et al. Clinical and environmental distribution of Legionella pneumophila in a university hospital in Italy: efficacy of ultraviolet disinfection.  J Hosp Infect. 2006;  62 494-501
  • 55 Farr B M, Gratz J C, Tartaglino J C et al. Evaluation of ultraviolet light for disinfection of hospital water contaminated with legionella.  Lancet. 1988;  8612 669-672
  • 56 Wendt C, Weist K, Dietz E et al. Feldversuch zur Gewinnung legionellenfreien Wassers aus Duschen und Waschbecken einer Transplantationsstation durch ein Wasserfiltersystem.  Zbl Hyg. 1995;  196 515-531
  • 57 Daeschlein G, Krüger W H, Selepko C et al. Hygienic safety of reuseable tap water filters (Germlyser®) with an operating time of 4 or 8 weeks in a haematological oncology transplantation unit.  BMC Infec Dis. 2007;  7 45-51
  • 58 Vonberg R-P, Rotermund-Rauchenberger D, Gastmeier P. Reuseable terminal tap water filters for nosocomial legionellosis prevention.  Ann Hematol. 2005;  84 403-405
  • 59 Vonberg R-P, Eckmanns T, Bruderek J et al. Use of terminal tap water filter systems for prevention of nosocomial legionellosis.  J Hosp Infect. 2005;  60 159-162
  • 60 Vonberg R-P, Sohr D, Bruderek J, Gastmeier P. Impact of a silver layer on the membrane of tap water filters on the microbiological quality of filtered water.  BMC Infect Dis. 2008;  8 133-137
  • 61 Salvatorelli G, Medici S, Finzi G et al. Effectiveness of installing an antibacterial filter at water taps to prevent Legionella infections.  J Hosp Infect. 2005;  61 270-271
  • 62 Sheffer P J, Stout J E, Wagener M M et al. Efficacy of new point-of-use water filter for preventing exposure to Legionella and waterborne bacteria.  Am J Infect Control. 2005;  33 S20-S25
  • 63 Nguyen T MN, Ilef D, Jarraud S et al. A community-wide outbreak of Legionnaires’ disease linked to industrial cooling towers – how far can contaminated aerosols spread ?.  J Infect Dis. 2006;  193 102-111
  • 64 Engelhart S, Pleischl S, Lück C et al. Hospital-acquired legionellosis originated from a cooling tower during a period of thermal inversion.  Int J Environ Health. 2008;  211 235-240
  • 65 Addiss D G, Davis J P, LaVenture M et al. Community acquired Legionnaires’ disease associated with a cooling tower: Evidence for longer-distance transport of Legionella pneumophila.  Am J Epidemiol. 1989;  130 557-568
  • 66 Brown C M, Nuorti P J, Breiman R F et al. A community outbreak of Legionnaires’ disease linked to hospital cooling towers: an epidemiological method to calculate dose of exposure.  Int J Epidemiol. 1999;  28 353-359
  • 67 EUROVENT. Guidelines on how to keep your evaporative cooling system safe. EUROVENT-Recommendations 15, 2002. http://www.eurovent-association.eu/web/eurovent/web/Recommendations/REC15-Eng.pdf Stand: Juni 2002.
  • 68 Pongratz A, Schwarzkopf A, Hahn H et al. Zum Einfluss von Rohrmaterialien des Trinkwassernetzes auf die Legionellenhäufigkeit in einem Klinikum.  Zbl Hyg. 1994;  195 483-488

Dipl.-Ing.(FH) Martin Scherrer

wwH-c GmbH
in Kooperation mit der Medizinischen Fakultät der Eberhard-Karls Universität Tübingen und dem Universitätsklinikum Tübingen

Ernst-Simon-Str. 16
72072 Tübingen

Phone: 07071/97732-14

Fax: 07071/97732-29

Email: martin.scherrer@wwH-c.com

    >