ABSTRACT
Interventional radiology plays a major role in the management of symptomatic intervertebral
disc herniations. In the absence of significant pain relief with conservative treatment
including oral pain killers and anti-inflammatory drugs, selective image-guided periradicular
infiltrations are generally indicated. The precise control of needle positioning allows
optimal distribution of steroids along the painful nerve root. After 6 weeks of failure
of conservative treatment including periradicular infiltration, treatment aiming to
decompress or remove the herniation is considered. Conventional open surgery offers
suboptimal results and is associated with significant morbidity. To achieve minimally
invasive discal decompression, different percutaneous techniques have been developed.
Their principle is to remove a small volume of nucleus, which results in an important
reduction of intradiscal pressure and subsequently reduction of pressure inside the
disc herniation. However, only contained disc herniations determined by computed tomography
or magnetic resonance are indicated for these techniques. Thermal techniques such
as radiofrequency or laser nucleotomy seem to be more effective than purely mechanical
nucleotomy; indeed, they achieve discal decompression but also thermal destruction
of intradiscal nociceptors, which may play a major role in the physiopathology of
discal pain. The techniques of image-guided spinal periradicular infiltration and
percutaneous nucleotomy with laser and radiofrequency are presented with emphasis
on their best indications.
KEYWORDS
Disc herniation - periradicular infiltration - percutaneous nucleotomy - laser - radiofrequency
REFERENCES
- 1
Castro I, Santos D P, Christoph DdeH, Landeiro J A.
The history of spinal surgery for disc disease: an illustrated timeline.
Arq Neuropsiquiatr.
2005;
63(3A)
701-706
- 2
Burke J G, Watson R W, McCormack D, Dowling F E, Walsh M G, Fitzpatrick J M.
Intervertebral discs which cause low back pain secrete high levels of proinflammatory
mediators.
J Bone Joint Surg Br.
2002;
84
196-201
- 3
Peng B, Hou S, Wu W, Zhang C, Yang Y.
The pathogenesis and clinical significance of a high-intensity zone (HIZ) of lumbar
intervertebral disc on MR imaging in the patient with discogenic low back pain.
Eur Spine J.
2006;
15
583-587
- 4
Coppes M H, Marani E, Thomeer R T, Groen G J.
Innervation of “painful” lumbar discs.
Spine (Phila Pa 1976).
1997;
22
2342-2349
discussion 2349-2350
- 5
Smith L, Garvin P J, Gesler R M, Jennings R B.
Enzyme dissolution of the nucleus pulposus.
Nature.
1963;
198
1311-1312
- 6
Andreula C, Muto M, Leonardi M.
Interventional spinal procedures.
Eur J Radiol.
2004;
50
112-119
- 7
Gangi A, Dietemann J L, Gasser B et al..
Interventional radiology with laser in bone and joint.
Radiol Clin North Am.
1998;
36
547-557
- 8
Kobayashi S, Baba H, Uchida K et al..
Effect of mechanical compression on the lumbar nerve root: localization and changes
of intraradicular inflammatory cytokines, nitric oxide, and cyclooxygenase.
Spine (Phila Pa 1976).
2005;
30
1699-1705
- 9
Furman M B, O'Brien E M, Zgleszewski T M.
Incidence of intravascular penetration in transforaminal lumbosacral epidural steroid
injections.
Spine (Phila Pa 1976).
2000;
25
2628-2632
- 10
Houten J K, Errico T J.
Paraplegia after lumbosacral nerve root block: report of three cases.
Spine J.
2002;
2
70-75
- 11
Huntoon M A, Martin D P.
Paralysis after transforaminal epidural injection and previous spinal surgery.
Reg Anesth Pain Med.
2004;
29
494-495
- 12
Bartynski W S, Grahovac S Z, Rothfus W E.
Incorrect needle position during lumbar epidural steroid administration: inaccuracy
of loss of air pressure resistance and requirement of fluoroscopy and epidurography
during needle insertion.
AJNR Am J Neuroradiol.
2005;
26
502-505
- 13
Johnson B A, Schellhas K P, Pollei S R.
Epidurography and therapeutic epidural injections: technical considerations and experience
with 5334 cases.
AJNR Am J Neuroradiol.
1999;
20
697-705
- 14
Cyteval C, Fescquet N, Thomas E, Decoux E, Blotman F, Taourel P.
Predictive factors of efficacy of periradicular corticosteroid injections for lumbar
radiculopathy.
AJNR Am J Neuroradiol.
2006;
27
978-982
- 15
Karppinen J, Malmivaara A, Kurunlahti M et al..
Periradicular infiltration for sciatica: a randomized controlled trial.
Spine (Phila Pa 1976).
2001;
26
1059-1067
- 16
Kolstad F, Leivseth G, Nygaard O P.
Transforaminal steroid injections in the treatment of cervical radiculopathy. A prospective
outcome study.
Acta Neurochir (Wien).
2005;
147
1065-1070
discussion 1070
- 17
McLain R F, Kapural L, Mekhail N A.
Epidural steroid therapy for back and leg pain: mechanisms of action and efficacy.
Spine J.
2005;
5
191-201
- 18
Ma D J, Gilula L A, Riew K D.
Complications of fluoroscopically guided extraforaminal cervical nerve blocks. An
analysis of 1036 injections.
J Bone Joint Surg Am.
2005;
87
1025-1030
- 19
Watanabe A T, Nishimura E, Garris J.
Image-guided epidural steroid injections.
Tech Vasc Interv Radiol.
2002;
5
186-193
- 20
Sandberg D I, Lavyne M H.
Symptomatic spinal epidural lipomatosis after local epidural corticosteroid injections:
case report.
Neurosurgery.
1999;
45
162-165
- 21
Wang J C, Kabo J M, Tsou P M, Halevi L, Shamie A N.
The effect of uniform heating on the biomechanical properties of the intervertebral
disc in a porcine model.
Spine J.
2005;
5
64-70
- 22
Choy D S, Case R B, Fielding W, Hughes J, Liebler W, Ascher P.
Percutaneous laser nucleolysis of lumbar disks.
N Engl J Med.
1987;
317
771-772
- 23
Schmolke S, Kirsch L, Gossé F, Flamme C, Bohnsack M, Rühmann O.
Risk evaluation of thermal injury to the cervical spine during intradiscal laser application
in vitro.
Photomed Laser Surg.
2004;
22
426-430
- 24
Knappe V, Frank F, Rohde E.
Principles of lasers and biophotonic effects.
Photomed Laser Surg.
2004;
22
411-417
- 25
Choy D S.
Percutaneous laser disc decompression (PLDD) update: focus on device and procedure
advances.
J Clin Laser Med Surg.
1993;
11
181-183
- 26
Gangi A, Dietemann J L, Ide C, Brunner P, Klinkert A, Warter J M.
Percutaneous laser disk decompression under CT and fluoroscopic guidance: indications,
technique, and clinical experience.
Radiographics.
1996;
16
89-96
- 27
Bosacco S J, Bosacco D N, Berman A T, Cordover A, Levenberg R J, Stellabotte J.
Functional results of percutaneous laser discectomy.
Am J Orthop (Belle Mead NJ).
1996;
25
825-828
- 28
Choy D S.
Percutaneous laser disc decompression: a 17-year experience.
Photomed Laser Surg.
2004;
22
407-410
- 29
Gangi A, Basile A, Basille A et al..
Radiofrequency and laser ablation of spinal lesions.
Semin Ultrasound CT MR.
2005;
26
89-97
- 30
Hellinger J.
Complications of non-endoscopic percutaneous laser disc decompression and nucleotomy
with the neodymium: YAG laser 1064 nm.
Photomed Laser Surg.
2004;
22
418-422
- 31
Chen Y C, Lee S H, Saenz Y, Lehman N L.
Histologic findings of disc, end plate and neural elements after coblation of nucleus
pulposus: an experimental nucleoplasty study.
Spine J.
2003;
3
466-470
- 32
Alexandre A, Coro L, Azuelos A, Pellone M.
Percutaneous nucleoplasty for discoradicular conflict.
Acta Neurochir Suppl.
2005;
92
83-86
- 33
O'Neill C W, Liu J J, Leibenberg E et al..
Percutaneous plasma decompression alters cytokine expression in injured porcine intervertebral
discs.
Spine J.
2004;
4
88-98
- 34
Chen Y C, Lee S H, Chen D.
Intradiscal pressure study of percutaneous disc decompression with nucleoplasty in
human cadavers.
Spine (Phila Pa 1976).
2003;
28
661-665
- 35
Gerszten P C, Welch W C, King Jr J T.
Quality of life assessment in patients undergoing nucleoplasty-based percutaneous
discectomy.
J Neurosurg Spine.
2006;
4
36-42
- 36
Singh V, Derby R.
Percutaneous lumbar disc decompression.
Pain Physician.
2006;
9
139-146
- 37
Bonaldi G, Baruzzi F, Facchinetti A, Fachinetti P, Lunghi S.
Plasma radio-frequency-based diskectomy for treatment of cervical herniated nucleus
pulposus: feasibility, safety, and preliminary clinical results.
AJNR Am J Neuroradiol.
2006;
27
2104-2111
- 38
Nardi P V, Cabezas D, Cesaroni A.
Percutaneous cervical nucleoplasty using coblation technology. Clinical results in
fifty consecutive cases.
Acta Neurochir Suppl.
2005;
92
73-78
Afshin GangiM.D. Ph.D.
Professor of Radiology, Department of Radiology B, University Hospital of Strasbourg
Pavillon Clovis Vincent BP 426, F-67091 Strasbourg, France
Email: gangi@rad6.u-strasbg.fr