Pharmacopsychiatry 2010; 43: S9-S20
DOI: 10.1055/s-0030-1253365
Review

© Georg Thieme Verlag KG Stuttgart · New York

Mental Illness, Synapses and the Brain – Behavioral Disorders by a System of Molecules within a System of Neurons?

F. Tretter1
  • 1Department of Addiction, Isar-Amper-Clinics, Haar/Munich, Germany
Further Information

Publication History

Publication Date:
18 May 2010 (online)

Abstract

The multi-level systems view conceiving the brain as a “network of networks of neurons” rises the question how it could be possible to understand this complex system with respect to mental functions and dysfunctions. One crucial issue is related to the analysis of the connectivity of these networks by the study of synapses. Also synapses are complex dynamical molecular systems that can only be understood by computer-based methodologies in order to analyze complex data sets and for modeling complex molecular networks. Many data are available but there is a lack models that capture the dynamic features of synapses that are involved in psychiatric disorders and psychopharmaceutical treatment. One strategy of research could be offered by Systems Biology. Here some challenges for modeling synapses in mental disorders are discussed.

References

  • 1 Abbot LF. Balancing homeostasis and learning in neural circuits.  Zoology. 2003;  106 (4) 365-371
  • 2 Abbott LF, Regehr WG. Synaptic computation.  Nature. 2004;  431 (7010) 796
  • 3 Abbott LF, Varela J, Sen K. et al . Synaptic depression and cortical gain control.  Science. 1997;  275 220-224
  • 4 Aghajanian GK, Marek GJ. Serotonin model of schizophrenia: emerging role of glutamate mechanisms.  Brain Res Rev. 2000;  31 (2–3) 302-312
  • 5 Alon U. Systems Biology – Design principles of biological circuits.. New York: Chapman & Hall; 2007
  • 6 Bender W, Albus M, Möller HJ. et al . Towards systemic theories in biological psychiatry.  Pharmacopsychiatry. 2006;  39 (S 01) S4-S9
  • 7 Benes FM. Neural circuitry models of schizophrenia: is it dopamine, GABA, glutamate or something else?.  Biol Psychiatry. 2009;  65 1003-1005
  • 8 Benoit-Marand M, Borrelli E, Gonomn F. Inhibition of dopamine release via presynaptic D2 receptors: time course asnd functional characteristics in vivo.  J Neurosci. 2001;  21 9134-9141
  • 9 Bertram R, Sherman A, Stanley EF. Single-domain/bound calcium hypothesis of transmitter release and facilitation.  J Neurophysiol. 1996;  75 1919-1931
  • 10 Best JA, Nijhout HF, Reed MC. Homeostatic mechanisms in dopamine synthesis and release: a mathematical model.  Theoretical Biology and Medical Modelling. 2009;  6 21 DOI: doi:10.1186/1742-4682-6-21
  • 11 Brunel N, Wang X-J. Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition.  J Comput Neurosci. 2001;  11 63-85
  • 12 Carlsson A. The current status of the dopamine hypothesis of schizophrenia.  Neuropsychopharmacology. 1988;  1 179-186
  • 13 Carlsson A. The neurochemical circuitry of schizophrenia.  Pharamcopsychiatry. 2006;  39 (Suppl. 1) S10-S14
  • 14 Carlsson M, Carlsson A. Interactions between glutamatergic and monoaminergic systems within the basal ganglia – implications for schizophrenia and Parkinson's disease.  Trends Neurosci. 1990;  13 272-276
  • 15 Carlsson A, Waters N, Carlsson ML. Neurotransmitter interactions in schizophrenia- therapeutic implications.  Eur Arch Psychiat Clin Neurosci. 1999;  249 (S 04) 37-43
  • 16 Carlsson A, Waters N, Holm-Waters S. et al . Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence.  Annu Rev Pharmacol Toxicol. 2001;  41 237-260
  • 17 Chavas J, Marty A. Coexistence of Excitatory and Inhibitory GABA Synapses in the Cerebellar Interneuron Network.  J Neurosci. 2003;  23 (6) 2019-2031
  • 18 Clements JD. Transmitter timecourse in the synaptic cleft: its role in central synaptic function, Trends.  Neurosci. 1996;  19 (5) 163-171
  • 19 Cohen JD, Servan-Schreiber D. A theory of dopamine function and its role in cognitive deficits in schizophrenia.  Schizophr Bull. 1993;  19 85-104
  • 20 Cooper JR, Bloom FE, Roth RH. The Biochemical Basis of Neuropharmacology.. 8th ed., New York: Oxford University Press; 2004
  • 21 Cragg SJ, Rice ME. Dancing past the DAT at a DA synapse.  Trends Neurosci. 2004;  27 (5) 270-277
  • 22 Dayan P, Abbott LF. Theoretical Neuroscience Computational and mathematical modeling of neural systems.. Cambridge, MA: MIT Press; 2005
  • 23 Durstewitz D. A few important points about dopamine's role in neural network dynamics.  Pharmacopsychiatry. 2006;  39 (S 01) S72-S75
  • 24 Durstewitz D, Seamans JK. The computational role of dopamine D1 receptors in working memory.  Neural Netw. 2002;  15 (4–6) 561-572 Review
  • 25 Durstewitz D, Seamans JK, Sejnowski TJ. Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex.  J Neurophysiol. 2000;  83 1733-1750
  • 26 Fernandez E, Schiappa R, Giraul JA. et al . DARPP-32 is a robust integrator of dopamine and glutamate signals.  PLoS Comput Biol. 2006;  2 (12) e176
  • 27 Fishwick PE. ed Handbook of dynamic system modeling.. New York: Chapman & Hall; 2007
  • 28 von Foerster H. Understanding Understanding: Essays on Cybernetics and Cognition.. Berlin: Springer; 2002
  • 29 Freeman WJ. Neurodynamics: An exploration in mesoscopic brain dynamics.. Berlin: Springer; 2000
  • 30 Gallinat J, Obermayer K, Heinz A. Systems Neurobiology of the dysfunctional brain.  Pharmacopsychiatry. 2007;  40 (S 01) S40-S44
  • 31 Gao W-J, Goldman-Rakic PS. Selective modulation of excitatory and inhibitory microcircuits by dopamine.  PNAS. 2003;  100 (5) 2836-2841
  • 32 Gebicke-Haerter P. Systems Biology in Molecular Psychiatry.  Pharmacopsychiatry. 2008;  41 (S 01) S19-S27
  • 33 Giuditta A, Chun JT, Eyman M. et al . Local gene expression in axons and nerve endings:the glia-neuronunit.  Physiol Rev. 2008;  89 515-555
  • 34 Goldman-Rakic PS. Cellular basis of working memory.  Neuron. 1995;  14 477-485
  • 35 Goldman-Rakic PS. The physiological approach: functional architecture of working memory and disordered cognition in schizophrenia.  Biol Psychiatry. 1999;  456 650-661
  • 36 Goldman-Rakic SP, Muly III EC, Williams GV. D1 receptors in prefrontal cells and circuits.  Brain Research Rev. 2000;  31 295-301
  • 37 Grace AA. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia.  Neurosci. 1991;  41 1-24
  • 38 Grace AA, Bunney BS. Electrophysiological Properties of Midbrain Dopamine Neurons: Psychopharmacology – 4th Generation of Progress.  2000; 
  • 39 Grant SGN. Systems biology in neuroscience: bridging genes to cognition.  Curr Opin Neurobiol. 2003;  13 (5) 577-582
  • 40 Haken H. Brain dynamics.. Berlin: Springer; 2002
  • 41 Hermandez-Lopez S, Bargas J, Surmeier DJ. et al . D1 recpetor activation enhances evoked discharges in neotriatal medium spiny neurons by modulating an L-type Ca2+ conductace.  J Neurosci. 1997;  17 3334-3342
  • 42 Hoffman RE, Dobscha SK. Cortical pruning and the development of schizophrenia: a computer model.  Schizophr Bull. 1989;  15 (3) 477-490
  • 43 Kauer JA, Malenka RC. Synaptic plasticity and addiction.  Nat Rev Neurosci. 2007;  8 844-858
  • 44 Kitano H. Computational Systems Biology.  Nature. 2002;  420 (6912) 206-210
  • 45 Kitano H. Systems Biology: a brief overview.  Science. 2002;  295 (5560) 1662-1664
  • 46 Klingauf J, Neher E. Modeling buffered Ca2+ diffusion near the membrane: Implications for secretion in neuroendocrine celly.  Biophys J. 1997;  72 674-690
  • 47 Klipp E, Herwig R, Kowald A. et al .Systems Biology in Practice.. Weinheim: Wiley-VCH; 2005
  • 48 Klipp E, Liebermeister W, Wierling Ch. et al .Systems Biology.. A Textbook. Weinheim: Wiley-VCH; 2009
  • 49 Koshkina E. Extracellular dopamine concentration control: computational model of feedback control.  2006;  URL: http://hdl.handle.net/1860/1160
  • 50 LeNovere N. The long journey to a Systems Biology of neuronal function.  BMC Syst Biol. 2007;  1 28
  • 51 LeNovere N. Neurological disease: are systems approaches teh way forward?.  Pharmacopsychiatry. 2008;  41 (S 01) S28-S31
  • 52 Lewis DA, Pierri JN, Volk DW. Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia.  Biol Psychiatry. 1999;  46 616-626
  • 53 Lewis DL, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia.  Nat Rev Neurosci. 2005;  6 312-324
  • 54 Lindskog M. Modelling of DARPP32 regulation to understand intracellular signaling in pschiatric disorder.  Pharmacopsychiatry. 2008;  41 (S 01) S99-S104
  • 55 Lindskog M, Kim MS, Wikstrom MA. et al . Transient Calcium and Dopamine Increase PKA Activity and DARPP-32 Phosphorylation.  PLoS Comput Biol. 2006;  2 (9) e119
  • 56 Lisman JE, Coyle JT, Green RW. et al . Circuit-based framework fro understanding neurotransmitter and rsik gene interactions in schizophrenia.  Trends Neurosci. 2008;  31 (5) 234-242
  • 57 Markram H. Blue Brain Project.  2010;  http://http:&bluebrain.epfl.ch/page18900.html
  • 58 Markram H, Gupta A, Uziel A. et al . Information processing with frequency-dependent synptic connections.  Neurobiol Learn Mem. 1998;  70 101-112
  • 59 Marty A, Llano I. Excitatory effects of GABA in established brain networks.  Trends Neurosci. 2005;  28 (6) 284-289
  • 60 Meisenzahl EM, Scheuerecker J, Schmitt GJS. et al . Dopamine, prefrontal cortex and working memory functioning in schizophrenia.  Pharmacopsychiatry. 2007;  40 (S 01) S62-S72
  • 61 Meyer-Lindenberg A, Weinberger DR. Intermediate phenotypes and genetic mechanisms of psychiatric disorders.  Nat Rev Neurosci. 2006;  10 818-827
  • 62 Moghaddam B. Bringing order to the glutamate chaos in schizophrenia.  Neuron. 2003;  40 881-884
  • 63 Moore H, West AR, Grace AA. The regulation of forebrain dopamine transmission: relevance to the pathophysiology and psychopathology.  Biol Psychiatry. 1999;  46 40-55
  • 64 Nakano T, Doi T, Yoshimoto J. et al . A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity.  PLoS Comput Biol. 2010;  6 (2) e1000670
  • 65 Neve KA, Seamans JK, Trantham-Davidson H. Dopamine Receptor.  J Recept Signal Transduct Res. 2004;  24 (3) 165-205
  • 66 Nicola SM, Surmeier J, Malenka RC. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens.  Annu Rev Neurosci. 2000;  23 185-215
  • 67 NIH . Systems Biology.  http://www.nigms.nih.gov/Initiatives/SysBio/ 2007; 
  • 68 NISB. . Netherlands Institute for Systems Biology.  2009;  http://www.neurosciencecampus-amsterdam.nl/en/index.asp
  • 69 Noble D. Multilevel modelling in Systems Biology: From Cells to Whole Organs.. In: Szallasi Z, Periwal V, Stelling J, (Ed) System, modelling in Cellular Biology. Cambridge, MA: MIT Press; 2006: 297-312
  • 70 Noble D. The Music of Life: Biology Beyond the Genome.. New York: Oxford University Press; 2006
  • 71 Palsson BO. Systems Biology.. Cambridge: Cambridge University Press; 2006
  • 72 Pocklington AJ, Armstrong JD, Grant SGN. Organization of brain complexity – synapse proteome form and function.  Brief Funct Genomic Proteomic. 2009;  5 (I) 66-73
  • 73 Pocklington AJ, Cumiskey M, Armstrong JD. et al . The proteomes of neurotransmitter receptor complexes form modular networks with distributed functionality underlying plasticity and behaviour.  Mol Syst Biol. 2006;  2 2006.0023
  • 74 Qi Z, Miller G, Voit E. A mathematical model of presynaptic dopamine homeostasis: implications for schizophrenia.  Pharmacopsychiatry. 2008;  41 (S 01) S89-S98
  • 75 Reckow S, Gormanns P, Holsboer F. et al . Psychiatric disorders biomarker identification From proteins to systems biology.  Pharmacopsychiatry. 2008;  41 (S 01) S70-S77
  • 76 Scherer J, Eberle E, Tretter F. A basic mathematical model of the dopamine synapse.. In: Trappl R Hrsg. Cybernetics and Systems. Vol I. Vienna: Austrian Society for Cybernetic Studies; 2002: 335-328
  • 77 Schmitz Y, Schmauss C, Sulzer D. Altered dopamine release and uptake kinetics in mice lacking D2 receptors.  J Neurosci. 2002;  22 (18) 8002-8009
  • 78 Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex.  Progr Neurobiol. 2004;  74 1-58
  • 79 Seamans JK, Durstewitz D, Christie B. et al . Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons.  Proc Natl Acad Sci USA. 2001;  98 301-306
  • 80 Shepherd G. Neurobiology.. New York: Oxford University Press; 1994
  • 81 Shepherd G. The synaptic organization of the brain.. New York: Oxford University Press; 2004
  • 82 Shiflet AB, Shiflet GW. Introduction to computational science.. Modeling and simulation for the sciences. Princeton, NJ: Princeton University Press; 2006
  • 83 Sjöstrom PJ, Rancz EA, Roth A. et al . Dendritic excitability and synaptic plasticity.  Physiol Rev. 2008;  88 769-840
  • 84 Szallasi Z, Stelling J, Periwal V. (Ed) System modeling in cellular biology.. Cambridge, MA, MIT Press; 2006
  • 85 Tarazi FI, Baldessarini RJ. Dopamine D4 receptors: significance for molecular psychiatry at the millennium.  Mol Psychiatry. 1999;  4 529-538
  • 86 Trantham-Davidson H, Neely LC, Seamans JK. Mechanisms underlying differential D1 versus D2 dopamine receptor regulation of inhibition in prefrontal cortex.  J Neurosci. 2004;  24 (47) 10652-10659
  • 87 Tretter F. Systemtheorie im klinischen Kontext.. Lengerich: Pabst Science Publisher; 2005
  • 88 Tretter F, Albus M. Systems biology and psychiatry – modeling molecular and cellular networks of mental disorders.  Pharmacopsychiatry. 2008;  41 (Suppl) S2-S18
  • 89 Tretter F, Gebicke-Haerter P. Neuropsychaitry – subject, concepts, methods and computational models.. In: Tretter F, Gebicke-Haerter P, Mendoza E, Winterer G. Sysetms Biology in Psychiatric Research. Weinheim: Wiley-VCH; (in press)
  • 90 Tretter F, Gebicke-Haerter PJ. Philosophy of neuroscience and options of systems science.  Pharmacopsychiatry. 2009;  42 (S 01) S2-S10
  • 91 Tretter F, Müller W, Carlsson A. (Eds) Systems Science, Computational Science and Neurobiology of Schizophrenia.  Pharmacopsychiatry. 2006;  39 (S 01) S1-S88
  • 92 Tretter F, Müller W. (Eds) Computational Neuropsychiatry: The Functional Architecture of Working Memory Networks in Schizophrenia – Data and Models.  Pharmacopsychiatry. 2007;  40 (S 01) S1-S94
  • 93 Tretter F, Gallinat J, Müller WE. (Eds) Systems Biology and Psychiatry: The functional architecture of molecular networks in mental disorerders – data and models.  Pharmacopsychiatry. 2008;  41 (Suppl1) S1-S106
  • 94 Tretter F, Gebicke-Haerter P, Heinz A. (Eds) Systems Biology of Addiction.  Pharmacopsychiatry. 2009;  42 (S 01) S1-S152
  • 95 Valor LM, Grant SGN. Integrating synapse proteomics with transcritpional regulation.  Behav Gent. 2007;  37 18-30
  • 96 Vernalaken I, Gründer G, Cumming P. Progress in psychopharmacotherapy through molecular imaging.. In: Tretter F, Gebicke-härter P, Mendoza E, Winterer G, (ed) Systems Biollogy in Psychiatric Research. Weinheim: Wiley-VCH; (in press)
  • 97 Vogels TP, Abbott LF. Gating deficits in model networks: a path to schizophrenia?.  Pharmacopsychiatry. 2007;  40 (S 01) S73-S77
  • 98 Wang M, Vijayraghavan S, Goldman-Rakic PS. Selective D2 Receptor Actions on the Functional Circuitry of Working Memory.  Science. 2004;  303 853-856
  • 99 Wang XJ, Tegnér J, Constandinidis C. et al . Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory.  PNAS. 2004;  101 (5) 1368-1373
  • 100 Wang XJ. Toward a prefrontal microcircuit model for cognitive deficits in schizophrenia.  Pharmacopsychiatry. 2006;  39 (S 01) S80-S87
  • 101 Wassef A, Baker J, Kochan LD. GABA and schizophrenia: a review of basic science and clinical studies.  J Clin Psychopharmacol. 2003;  23 (6) 601-640
  • 102 Wegener N, Koch M. Neurobiology and systems physiology of the endocannabinoid system.  Pharmacopsychiatry. 2009;  42 (S 01) S79-S86
  • 103 Wightman RM, Heien ML, Wassum KM. et al . Dopamine release is heterogeneous within microenvironments of the rat nucleus accumbens.  Eur J Neurosci. 2007;  26 2046-2054
  • 104 Winterer G. Cortical microcircuits in schizophrenia – the dopamine hypothesis revisited.  Pharmacopsychiatry. 2006;  39 (S 01) S68-S71
  • 105 Winterer G. Prefrontal dopamine signaling in schizophrenia – the corticocentric model.  Pharmacopsychiatry. 2007;  40 (S 01) S45-S53
  • 106 Winterer G, Weinberger DR. Genes, dopamine and cortical signal-to-noise ratio in schizophrenia.  Trends Neurosci. 2004;  27 (11) 683-690
  • 107 Yang ChR. Chen Targeting Prefrontal Cortical Dopamine D1 and N-methyl-D-aspartate receptor interactions in schizophrenia treatment.  Neuroscientist. 2005;  11 452-470
  • 108 Zeigler BP, Praehofer H, Kim TG. Theory of modelling and simulation.. London: Elsevier Academic Press; 2000

Correspondence

Prof. Dr. Dr. Dr. F. Tretter

Department of Addiction

Isar-Amper-Clinics

85540 Haar

Germany

Phone: 089/4562-3708

Fax: 089/4562-3754

Email: felix.tretter@iak-kmo.de

    >