J Reconstr Microsurg 2010; 26(5): 335-340
DOI: 10.1055/s-0030-1249317
© Thieme Medical Publishers

The Vastus Intermedius Periosteal (VIP) Flap: A Novel Flap for Osteoinduction

Rian Adam Maercks1 , Christopher Michael Runyan2 , Donna Carlson Jones2 , Jesse Adam Taylor2
  • 1Plastic and Reconstructive Surgery, Hospital General Dr Gea Manuel Gonzalez, Miami, Florida
  • 2Division of Plastic and Reconstructive Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
Further Information

Publication History

Publication Date:
25 February 2010 (online)

ABSTRACT

Periosteum's role in fracture healing is widely recognized, and its function in bone tissue engineering shows great potential. Here we introduce a novel periosteal free flap to be used as an abundant source of periosteum in the engineering and repair of bone. The descending branch of the lateral femoral circumflex vessels were isolated on 11 fresh human cadavers, preserving perforators to the vastus intermedius muscle. A cuff of vastus intermedius and ~75% of the circumference of the femoral periosteum were harvested from 6 cm proximal to the knee to 8 cm distal to the greater trochanter. Flap pedicle length and periosteal dimensions were measured. The pedicle arteries were injected with radiopaque dye, and radiographs were taken. A musculoperiosteal flap was elevated with visible descending perforators in each case. Mean flap surface area was 128 cm2 (±99–143 cm2). Average pedicle length was 8 cm (±6–11 cm). Dye injection confirmed that the flaps blood supply was the descending branch of the lateral femoral circumflex artery. This anatomical study confirms the vascular supply of this large musculoperiosteal flap. Future work will test its efficacy as an osteoinductive agent in bone repair and tissue engineering in humans.

REFERENCES

  • 1 Finley J M, Acland R D, Wood M B. Revascularized periosteal grafts—a new method to produce functional new bone without bone grafting.  Plast Reconstr Surg. 1978;  61 1-6
  • 2 Skoog T. The use of periosteal flaps in the repair of clefts of the primary palate.  Cleft Palate J. 1965;  2 332-339
  • 3 Ritsilä V, Alhopuro S, Gylling U, Rintala A. The use of free periosteum for bone formation in congenital clefts of the maxilla. A preliminary report.  Scand J Plast Reconstr Surg. 1972;  6 57-60
  • 4 Ritsilä V, Alhopuro S, Rintala A. Bone formation with free periosteal grafts in reconstruction of congenital maxillary clefts.  Ann Chir Gynaecol. 1976;  65 342-344
  • 5 Ritsilä V, Alhopuro S, Rintala A. Bone formation with free periosteum. An experimental study.  Scand J Plast Reconstr Surg. 1972;  6 51-56
  • 6 Crock J G, Morrison W A. A vascularised periosteal flap: anatomical study.  Br J Plast Surg. 1992;  45 474-478
  • 7 Kelley P, Klebuc M, Hollier L. Complex midface reconstruction: maximizing contour and bone graft survival utilizing periosteal free flaps.  J Craniofac Surg. 2003;  14 779-782
  • 8 Kelley P, Klebuc M, Hollier L. Complex midface reconstruction: maximizing contour and bone graft survival utilizing periosteal free flaps.  J Craniofac Surg. 2003;  14 413-416
  • 9 Satoh T, Tsuchiya M, Harii K. A vascularised iliac musculo-periosteal free flap transfer: a case report.  Br J Plast Surg. 1983;  36 109-112
  • 10 van den Wildenberg F A, Goris R J, Tutein Nolthenius-Puylaert M B. Free revascularised periosteum transplantation: an experimental study.  Br J Plast Surg. 1984;  37 226-235
  • 11 Acland R D. Caution about clinical use of vascularized periosteal grafts.  Plast Reconstr Surg. 1978;  62 290
  • 12 Puckett C L, Hurvitz J S, Metzler M H, Silver D. Bone formation by revascularized periosteal and bone grafts, compared with traditional bone grafts.  Plast Reconstr Surg. 1979;  64 361-365
  • 13 Enneking W F, Campanacci D A. Retrieved human allografts: a clinicopathological study.  J Bone Joint Surg Am. 2001;  83-A 971-986
  • 14 Wheeler D L, Cross A R, Eschbach E J et al.. Grafting of massive tibial subchondral bone defects in a caprine model using beta-tricalcium phosphate versus autograft.  J Orthop Trauma. 2005;  19 85-91
  • 15 Chase S W, Herndon C H. The fate of autogenous and homogenous bone grafts.  J Bone Joint Surg Am. 1955;  37-A 809-841
  • 16 Yan Z Q, Chen Y S, Li W J et al.. Treatment of osteonecrosis of the femoral head by percutaneous decompression and autologous bone marrow mononuclear cell infusion.  Chin J Traumatol. 2006;  9 3-7
  • 17 Takato T, Harii K, Nakatsuka T, Ueda K, Ootake T. Vascularized periosteal grafts: an experimental study using two different forms of tibial periosteum in rabbits.  Plast Reconstr Surg. 1986;  78 489-497
  • 18 Vögelin M DE, Jones N F, Lieberman J R, Baker J M, Tsingotjidou A S, Brekke J H. Prefabrication of bone by use of a vascularized periosteal flap and bone morphogenetic protein.  Plast Reconstr Surg. 2002;  109 190-198
  • 19 Romana M C, Masquelet A C. Vascularized periosteum associated with cancellous bone graft: an experimental study.  Plast Reconstr Surg. 1990;  85 587-592
  • 20 Runyan C M, Jones D C, Maercks R A, Simpson D S, Bove K E, Taylor J A. Porcine allograft revitalization using autologous adipose-derived stem cells, bone morphogenetic protein-2, and periosteum.  Plast Reconstr Surg in press.
  • 21 Jenkins D H, Cheng D H, Hodgson A R. Stimulation of bone growth by periosteal stripping. A clinical study.  J Bone Joint Surg Br. 1975;  57 482-484
  • 22 da Vieira Silva R, Camilli J A. Periosteal donor site regeneration in rats.  J Submicrosc Cytol Pathol. 2002;  34 187-190

Jesse Adam TaylorM.D. 

Assistant Professor, Division of Plastic and Reconstructive Surgery, Cincinnati Children's Hospital Medical Center

3333 Burnet Ave, ML 2020, Cincinnati, OH 45229

Email: Jesse.taylor@cchmc.org

    >