Neuropediatrics 2009; 40(5): 207-210
DOI: 10.1055/s-0030-1248264
Rapid Communication

© Georg Thieme Verlag KG Stuttgart · New York

Autosomal Recessive Inheritance of GLUT1 Deficiency Syndrome

J. Klepper1 , H. Scheffer2 , M.F. Elsaid3 , E.-J. Kamsteeg2 , M. Leferink2 , T. Ben-Omran4
  • 1Childrens’ Hospital Aschaffenburg, Aschaffenburg, Germany
  • 2Department of Human Genetics,University Medical Center Nijmegen, Nijmegen, The Netherlands
  • 3Department of Pediatrics, Pediatric Neurology, Hamad Medical Corporation and Weill Cornell Medical College, Doha, Qatar
  • 4Clinical and Metabolic Genetics, Hamad Medical Corporation and Weill Cornell Medical College, Doha, Qatar
Further Information

Publication History

received 24.07.2009

accepted 20.01.2010

Publication Date:
10 March 2010 (online)

Abstract

GLUT1 deficiency syndrome (GLUT1DS) is understood as a monogenetic disease caused by heterozygous SLC2A1 gene mutations with autosomaldominant and sporadic transmission. We report on a six-year-old girl from an inbred Arab family with moderate global developmental delay, epilepsy, ataxia, hypotonia, and hypoglycorrhachia (CSF glucose 36 mg/dL; CSF lactate 1.09 mmol/L; CSF/blood glucose ratio 0.44). Molecular analysis of the SLC2A1 gene identified a novel homozygous c1402C>T (p. Arg468Trp) mutation in exon 10 in the index patient and her asymptomatic younger sister. The mutation was absent in 120 control alleles of healthy individuals as well as in 400 alleles of other GLUT1DS patients. Arg468 represents a highly conserved, functionally important amino acid residue in the GLUT1 carboxy-terminus essential for substrate recognition and transport. Both unaffected parents were heterozygous for the mutation. A younger brother and two family members were healthy and carried the GLUT1 wild type. A ketogenic diet effectively controlled seizures in the index patient. We conclude that GLUT1DS can be transmitted as an autosomal recessive disease and provide new insights into genetic counselling for this treatable disorder.

References

  • 1 Brockmann K, Wang D, Korenke CG. et al . Autosomal dominant glut-1 deficiency syndrome and familial epilepsy.  Ann Neurol. 2001;  50 476-485
  • 2 Dauterive R, Laroux S, Bunn RC. et al . C-terminal mutations that alter the turnover number for 3-O-methylglucose transport by GLUT1 and GLUT4.  J Biol Chem. 1996;  271 11414-11421
  • 3 De Vivo DC, Leary L, Wang D. Glucose transporter 1 deficiency syndrome and other glycolytic defects.  J Child Neurol. 2002;  17 3S15-3S25
  • 4 Due AD, Qu ZC, Thomas JM. et al . Role of the C-terminal tail of the GLUT1 glucose transporter in its expression and function in Xenopus laevis oocytes.  Biochemistry. 1995;  25 5462-5471
  • 5 Klepper J, Leiendecker B. GLUT1 deficiency syndrome − 2007 update.  Dev Med Child Neurol. 2007;  49 707-716
  • 6 Klepper J, Willemsen M, Verrips A. et al . Autosomal dominant transmission of GLUT1 deficiency.  Hum Mol Genet. 2001;  10 63-68
  • 7 Muraoka A, Hashiramoto , Clark AE. et al . Analysis of the structural features of the C-terminus of GLUT1 that are required for transport catalytic activity.  Biochem J. 1995;  15 699-704
  • 8 Oka Y, Asano T, Shibasaki Y. et al . C-terminal truncated glucose transporter is locked into an inward-facing form without transport activity.  Nature. 1990;  7 550-553
  • 9 Pascual JM, Wang DDV. Glucose transporter type 1 deficiency syndrome.  Gene Reviews.
  • 10 Suls A, Dedeken P, Goffin K. et al . Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1.  Brain. 2008;  131 183-144
  • 11 Verhey KJ, Hausdorff SF, Birnbaum MJ. Identification of the carboxy terminus as important for the isoform-specific subcellular targeting of glucose transporter proteins.  J Cell Biol. 1993;  123 137-147
  • 12 Wang D, Kranz-Eble P, DeVivo DC. Mutational analysis of GLUT1 (SLC2A1) in Glut-1 deficiency syndrome.  Hum Mutat. 2000;  16 224-231
  • 13 Weber YG, Storch A, Wuttke TV. et al . GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak.  J Clin Invest. 2008;  118 2157-2168
  • 14 Zhao F-Q, Keating AF. Functional properties and genomics of glucose transporters.  Current Genetics. 2007;  8 113-128

Correspondence

PD Dr. med. Joerg Klepper

Childrens’ Hospital Aschaffenburg

Am Hasenkopf

63739 Aschaffenburg

Germany

Phone: +49/6021/32 3601/3600

Fax: +49/6021/32 3699

Email: joerg.klepper@klinikum-aschaffenburg.de

    >