Subscribe to RSS
DOI: 10.1055/s-0029-1246014
© Georg Thieme Verlag KG Stuttgart · New York
Die Bedeutung axonaler Pathologie für das Konzept der Neurodegeneration bei der Multiplen Sklerose
Axonal Damage and its Significance for the Concept of Neurodegeneration in Multiple SclerosisPublication History
Publication Date:
10 March 2011 (online)

Zusammenfassung
Die Effektormechanismen der Multiplen Sklerose (MS) bleiben trotz großer Forschungsanstrengungen unverstanden. Das vorherrschende pathologische Verständnis beinhaltet das hierarchische Aufeinanderfolgen der Trias Inflammation, Demyelinisierung und Axonschaden. Doch neue Untersuchungen haben ergeben, dass axonale Degeneration auch unabhängig von Inflammation und Demyelinisierung auftreten kann. Ziel dieses Artikels ist die kritische Reevaluation des traditionellen Paradigmas der MS-Pathologie. Nicht nur sollen mögliche zelluläre, humorale und metabolische Mechanismen der Axonpathologie beleuchtet, sondern auch das isolierte Auftreten axonaler Schädigung kritisch diskutiert werden. Ein umfassendes Verständnis der pathogenetischen Mechanismen wird zur Verbesserung der Therapiemöglichkeiten bei MS beitragen. Diese sollten nicht mehr nur auf die inflammatorische, sondern auch auf die neurodegenerative Komponente der Erkrankung abzielen.
Abstract
In spite of tremendous scientific effort, the mechanisms underlying multiple sclerosis (MS) still remain to be elucidated. The prevalent pathogenetic concept adheres to the assumption of a strict hierarchical sequence of the triad inflammation, demyelination and axonal damage. However, recent studies have provided evidence that axonal pathology can occur independently of inflammation and demyelination. The present article critically re-evaluates the traditional paradigm of MS pathology. Potential cellular, humoral and metabolic mechanisms of axonal pathology are delineated and the development of isolated axonal damage is assessed. A better understanding of the pathological processes underlying MS is likely to result in an improvement of current therapeutic strategies. These should not only target the inflammatory, but also the neurodegenerative component of the disease.
Schlüsselwörter
Axonschaden - Demyelinisierung - EAE - Inflammation - MS
Keywords
axonal damage - demyelination - EAE - inflammation - MS
Literatur
- 1
Kornek B, Lassmann H.
Axonal pathology in multiple sclerosis. A historical note.
Brain Pathol.
1999;
9
651-656
MissingFormLabel
- 2
Trapp B D, Peterson J, Ransohoff R M et al.
Axonal transection in the lesions of multiple sclerosis.
N Engl J Med.
1998;
338
278-285
MissingFormLabel
- 3
Allen I V, McQuaid S, Mirakhur M et al.
Pathological abnormalities in the normal-appearing white matter in multiple sclerosis.
Neurol Sci.
2001;
22
141-144
MissingFormLabel
- 4
Bitsch A, Schuchardt J, Bunkowski S et al.
Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation.
Brain.
2000;
123
1174-1183
MissingFormLabel
- 5
Goverman J, Brabb T.
Rodent models of experimental allergic encephalomyelitis applied to the study of multiple
sclerosis.
Lab Anim Sci.
1996;
46
482-492
MissingFormLabel
- 6
Kuerten S, Angelov D N.
Comparing the CNS morphology and immunobiology of different EAE models in C 57BL/
6 mice – a step towards understanding the complexity of multiple sclerosis.
Ann Anat.
2008;
190
1-15
MissingFormLabel
- 7
Sospedra M, Martin R.
Immunology of multiple sclerosis.
Annu Rev Immunol.
2005;
23
683-747
MissingFormLabel
- 8
Wucherpfennig K W.
Mechanisms for the induction of autoimmunity by infectious agents.
J Clin Invest.
2001;
108
1097-1104
MissingFormLabel
- 9
Lehmann P V, Forsthuber T, Miller A et al.
Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen.
Nature.
1992;
358
155-157
MissingFormLabel
- 10
Hickey W F.
Basic principles of immunological surveillance of the normal central nervous system.
Glia.
2001;
36
118-124
MissingFormLabel
- 11
Plumb J, McQuaid S, Mirakhur M et al.
Abnormal endothelial tight junctions in active lesions and normal-appearing white
matter in multiple sclerosis.
Brain Pathol.
2002;
12
154-169
MissingFormLabel
- 12
Yednock T A, Cannon C, Fritz L C et al.
Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha
4 beta 1 integrin.
Nature.
1992;
356
63-66
MissingFormLabel
- 13
Kent S J, Karlik S J, Cannon C et al.
A monoclonal antibody to alpha 4 integrin suppresses and reverses active experimental
allergic encephalomyelitis.
J Neuroimmunol.
1995;
58
1-10
MissingFormLabel
- 14
Rudick R A, Stuart W H, Calabresi P A et al.
Natalizumab plus interferon beta-1a for relapsing multiple sclerosis.
N Engl J Med.
2006;
354
911-923
MissingFormLabel
- 15
Reboldi A, Coisne C, Baumjohann D et al.
C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid
plexus is required for the initiation of EAE.
Nat Immunol.
2009;
10
514-523
MissingFormLabel
- 16
Menge T, Lalive P H, Büdingen H C et al.
Antibody responses against galactocerebroside are potential stage-specific biomarkers
in multiple sclerosis.
J Allergy Clin Immunol.
2005;
116
453-459
MissingFormLabel
- 17
Ehling von R, Lutterotti A, Wanschitz J et al.
Increased frequencies of serum antibodies to neurofilament light in patients with
primary chronic progressive multiple sclerosis.
Mult Scler.
2004;
10
601-606
MissingFormLabel
- 18
Silber E, Semra Y K, Gregson N A et al.
Patients with progressive multiple sclerosis have elevated antibodies to neurofilament
subunit.
Neurology.
2002;
58
1372-1381
MissingFormLabel
- 19
Mathey E K, Derfuss T, Storch M K et al.
Neurofascin as a novel target for autoantibody-mediated axonal injury.
J Exp Med.
2007;
204
2363-2372
MissingFormLabel
- 20
Aloisi F, Ria F, Adorini L.
Regulation of T-cell responses by CNS antigen-presenting cells: different roles for
microglia and astrocytes.
Immunol Today.
2000;
21
141-147
MissingFormLabel
- 21
Neumann H, Medana I M, Bauer J et al.
Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases.
Trends Neurosci.
2002;
25
313-319
MissingFormLabel
- 22
Lucchinetti C, Brück W, Parisi J et al.
Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of
demyelination.
Ann Neurol.
2000;
47
707-717
MissingFormLabel
- 23
Niepel G G, Constantinescu C S.
Aetiology and pathogenesis of Multiple sclerosis.
Hosp Pharm.
2003;
10
13-16
MissingFormLabel
- 24
Lassmann H, Brück W, Lucchinetti C.
Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy.
Trends Mol Med.
2001;
7
115-121
MissingFormLabel
- 25
Coleman M P, Perry V H.
Axon pathology in neurological disease: a neglected therapeutic target.
Trends Neurosci.
2002;
25
532-537
MissingFormLabel
- 26
Perry V H, Anthony D C.
Axon damage and repair in multiple sclerosis.
Philos Trans R Soc Lond B Biol Sci.
1999;
354
1641-1647
MissingFormLabel
- 27
De Stefano N, Matthews P M, Fu L et al.
Axonal damage correlates with disability in patients with relapsing-remitting multiple
sclerosis. Results of a longitudinal magnetic resonance spectroscopy study.
Brain.
1998;
121
1469-1477
MissingFormLabel
- 28
Ferguson B, Matyszak M K, Esiri M M et al.
Axonal damage in acute multiple sclerosis lesions.
Brain.
1997;
120
393-399
MissingFormLabel
- 29
Batoulis H, Addicks K, Kuerten S.
Emerging concepts in autoimmune encephalomyelitis beyond the CD 4 /T(H)1 paradigm.
Ann Anat.
2010;
192
179-193
MissingFormLabel
- 30
Rivera-Quiñones C, McGavern D, Schmelzer J D et al.
Absence of neurological deficits following extensive demyelination in a class I-deficient
murine model of multiple sclerosis.
Nat Med.
1998;
4
187-193
MissingFormLabel
- 31
Howe C L, Adelson J D, Rodriguez M.
Absence of perforin expression confers axonal protection despite demyelination.
Neurobiol Dis.
2007;
25
354-359
MissingFormLabel
- 32
Medana I, Martinic M A, Wekerle H et al.
Transection of major histocompatibility complex class I-induced neurites by cytotoxic
T lymphocytes.
Am J Pathol.
2001;
159
809-815
MissingFormLabel
- 33
Neumann H, Schweigreiter R, Yamashita T et al.
Tumor necrosis factor inhibits neurite outgrowth and branching of hippocampal neurons
by a rho-dependent mechanism.
J Neurosci.
2002;
22
854-862
MissingFormLabel
- 34
Piani D, Fontana A.
Involvement of the cystine transport system xc- in the macrophage-induced glutamate-dependent
cytotoxicity to neurons.
J Immunol.
1994;
152
3578-3585
MissingFormLabel
- 35
Pitt D, Werner P, Raine C S.
Glutamate excitotoxicity in a model of multiple sclerosis.
Nat Med.
2000;
6
67-70
MissingFormLabel
- 36
Bö L, Dawson T M, Wesselingh S et al.
Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis
brains.
Ann Neurol.
1994;
36
778-786
MissingFormLabel
- 37
Redford E J, Kapoor R, Smith K J.
Nitric oxide donors reversibly block axonal conduction: demyelinated axons are especially
susceptible.
Brain.
1997;
120
2149-2157
MissingFormLabel
- 38
Mead R J, Singhrao S K, Neal J W et al.
The membrane attack complex of complement causes severe demyelination associated with
acute axonal injury.
J Immunol.
2002;
168
458-465
MissingFormLabel
- 39
Singhrao S K, Neal J W, Rushmere N K et al.
Spontaneous classical pathway activation and deficiency of membrane regulators render
human neurons susceptible to complement lysis.
Am J Pathol.
2000;
157
905-918
MissingFormLabel
- 40
Mao P, Reddy P H.
Is multiple sclerosis a mitochondrial disease?.
Biochim Biophys Acta.
2010;
1802
66-79
MissingFormLabel
- 41
Schon E A, Manfredi G.
Neuronal degeneration and mitochondrial dysfunction.
J Clin Invest.
2003;
111
303-312
MissingFormLabel
- 42
Dautry C, Vaufrey F, Brouillet E et al.
Early N-acetylaspartate depletion is a marker of neuronal dysfunction in rats and
primates chronically treated with the mitochondrial toxin 3-nitropropionic acid.
J Cereb Blood Flow Metab.
2000;
20
789-799
MissingFormLabel
- 43
Narayana P A, Doyle T J, Lai D et al.
Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic
resonance imaging, and quantitative lesion volumetry in multiple sclerosis.
Ann Neurol.
1998;
43
56-71
MissingFormLabel
- 44
De Stefano N, Narayanan S, Francis S J et al.
Diffuse axonal and tissue injury in patients with multiple sclerosis with low cerebral
lesion load and no disability.
Arch Neurol.
2002;
59
1565-1571
MissingFormLabel
- 45
Adams J H, Graham D I, Gennarelli T A et al.
Diffuse axonal injury in non-missile head injury.
J Neurol Neurosurg Psychiatry.
1991;
54
481-483
MissingFormLabel
- 46
Kamal A, Stokin G B, Yang Z et al.
Axonal transport of amyloid precursor protein is mediated by direct binding to the
kinesin light chain subunit of kinesin-I.
Neuron.
2000;
28
449-459
MissingFormLabel
- 47
Kamal A, Almenar-Queralt A, LeBlanc J F et al.
Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase
and presenilin-1 requires APP.
Nature.
2001;
414
643-648
MissingFormLabel
- 48
Müller U, Kins S.
APP on the move.
Trends Mol Med.
2002;
8
152-155
MissingFormLabel
- 49
Lunn M P, Crawford T O, Hughes R A et al.
Anti-myelin-associated glycoprotein antibodies alter neurofilament spacing.
Brain.
2002;
125
904-911
MissingFormLabel
- 50
Edgar J M, McLaughlin M, Werner H B et al.
Early ultrastructural defects of axons and axon-glia junctions in mice lacking expression
of Cnp1.
Glia.
2009;
57
1815-1824
MissingFormLabel
- 51
Lappe-Siefke C, Goebbels S, Gravel M et al.
Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination.
Nat Genet.
2003;
33
366-374
MissingFormLabel
- 52
Morfini G A, Burns M, Binder L I et al.
Axonal transport defects in neurodegenerative diseases.
J Neurosci.
2009;
29
12 776-12 786
MissingFormLabel
- 53
Wilkins A, Majed H, Layfield R et al.
Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular
mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic
factor.
Neurosci.
2003;
23
4967-4974
MissingFormLabel
- 54
Garbern J Y, Yool D A, Moore G J et al.
Patients lacking the major CNS myelin protein, proteolipid protein 1, develop length-dependent
axonal degeneration in the absence of demyelination and inflammation.
Brain.
2002;
125
551-561
MissingFormLabel
- 55
Chang A, Tourtellotte W W, Rudick R et al.
Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis.
N Engl J Med.
2002;
346
165-173
MissingFormLabel
- 56
De Stefano N, Matthews P M, Filippi M et al.
Evidence of early cortical atrophy in MS: relevance to white matter changes and disability.
Neurology.
2003;
60
1157-1162
MissingFormLabel
- 57
Narayanan S, De Stefano N, Francis G S et al.
Axonal metabolic recovery in multiple sclerosis patients treated with interferon beta-1b.
J Neurol.
2001;
248
979-986
MissingFormLabel
- 58
Khan O, Shen Y, Caon C et al.
Axonal metabolic recovery and potential neuroprotective effect of glatiramer acetate
in relapsing-remitting multiple sclerosis.
Mult Scler.
2005;
11
646-651
MissingFormLabel
- 59
Paolillo A, Coles A J, Molyneux P D et al.
Quantitative MRI in patients with secondary progressive MS treated with monoclonal
antibody Campath 1 H.
Neurology.
1999;
53
751-757
MissingFormLabel
- 60
Groom A J, Smith T, Turski L.
Multiple sclerosis and glutamate.
Ann N Y Acad Sci.
2003;
993
229-275
MissingFormLabel
- 61
Kalkers N F, Barkhof F, Bergers E et al.
The effect of the neuroprotective agent riluzole on MRI parameters in primary progressive
multiple sclerosis: a pilot study.
Mult Scler.
2002;
8
532-533
MissingFormLabel
Dr. Stefanie Kuerten
Institut I für Anatomie, Universität zu Köln
Joseph-Stelzmann-Str. 9
50931 Köln
Email: stefanie.kuerten@uk-koeln.de