Zusammenfassung
Ziel: Das Geburtsgewicht ist ein wichtiger prognostischer Parameter. Die gebräuchlichen
Gewichtsformeln haben eine gewisse Messungenauigkeit. Der sonografische Abdomenumfang
(AU) des Feten ist in den meisten Gewichtsgleichungen enthalten und hat den größten
Einfluss auf die Gewichtsschätzung. Bei kleinem AU hat eine speziell hierfür entwickelte
Formel die Gewichtsbestimmung verbessert. Das Ziel war es daher, eine neue Gewichtsformel
für Feten mit großem AU (≥ 36,0 cm) zu entwickeln, um die Gewichtsschätzung zu optimieren.
Material und Methoden: Es wurden 830 Schwangerschaften eingeschlossen. Einschlusskriterien waren eine Einlingsschwangerschaft,
eine komplette Ultraschallbiometrie mit einem sonografischen AU ≥ 36,0 cm innerhalb
von 7 Tagen vor Geburt sowie ein Fehlen von strukturellen oder chromosomalen Anomalien.
Die Genauigkeit zweier „Best-fit“-Formeln, bestimmt mittels Vorwärts-Regressionsanalyse,
wurde mit gängigen Gewichtsformeln anhand des prozentualen Fehlers (PE), des absoluten
prozentualen Fehlers (APE), der „Limits of agreement“-Methode (LOA) und der kumulativen
Verteilung verglichen. Ergebnisse: Die neue Formel I zeigte keinen systematischen Fehler, im Gegensatz dazu überschätzten
die neue Formel II und die Routineformeln das Gewicht signifikant. Die Mediane der
APEs waren bei den beiden neuen Formeln am niedrigsten (5,77 und 7,25). Weiterhin
wiesen sie die engsten LOA auf. Die neue Formel I schloss bezüglich der kumulativen
Verteilung auf allen Ebenen (5 %, 10 %, 15 % und 20 %) die meisten Fälle ein. Schlussfolgerung: Bei Feten mit einem Abdomenumfang von ≥ 36,0 cm hilft die speziell entwickelte Formel
I, die fetale Gewichtsschätzung zu verbessern.
Abstract
Purpose: Birth weight (BW) is an important prognostic parameter for neonatal morbidity and
mortality. Commonly used weight formulas lack accuracy, especially at the lower and
upper end of the fetal weight range. Fetal abdominal circumference (AC) as part of
most of the commonly used equations has the greatest impact on weight estimation.
It has been shown that formulas specifically designed for a small fetal AC can improve
weight estimation. The aim was to find out whether a new formula specifically designed
for fetuses with a large AC may also improve weight determination. Materials and Methods: The study included 830 singleton pregnancies. The inclusion criteria were ultrasound
examination with complete biometric parameters and an AC ≥ 36.0 cm within 7 days of
delivery, and an absence of structural or chromosomal malformations. Two “best-fit”
formulas were derived by forward regression analysis. The accuracy of the new formulas
was compared with commonly used weight equations using percentage error (PE), absolute
percentage error (APE), limits of agreement (LOA) and cumulative distribution. Results: New formula I had no systematic error while new formula II and the routine methods
significantly overestimated fetal weight. The medians of the APE were the lowest among
the new equations (5.77 and 7.25). The new formulas also demonstrated the narrowest
LOA. Importantly, at all discrepancy levels (5 %, 10 %, 15 %, and 20 %), new formula
I included significantly more cases than the commonly used methods. Conclusion: These specifically designed equations help to improve fetal weight estimation for
fetuses with an AC ≥ 36.0 cm. For optimal weight estimation, we recommend using new
formula I.
Key words
weight formula - abdominal circumference - macrosomia - fetal weight estimation
References
1
Kurmanavicius J, Burkhardt T, Wisser J et al.
Ultrasonographic fetal weight estimation: accuracy of formulas and accuracy of examiners
by birth weight from 500 to 5000 g.
J Perinat Med.
2004;
32
155-161
2
Dudley N J.
A systematic review of the ultrasound estimation of fetal weight.
Ultrasound Obstet Gynecol.
2005;
25
80-89
3
Hasenoehrl G, Pohlhammer A, Gruber R et al.
Fetal weight estimation by 2D and 3D ultrasound: comparison of six formulas.
Ultraschall in Med.
2009;
30
585-590
4
Siemer J, Egger N, Hart N et al.
Fetal weight estimation by ultrasound: comparison of 11 different formulas and examiners
with differing skill levels.
Ultraschall in Med.
2008;
29
159-164
5
Hoopmann M, Bernau B, Hart N et al.
Do specific weight formulas for fetuses < or = 1500 g really improve weight estimation?.
Ultraschall in Med.
2010;
31
48-52
6
Stein W, Delfy A, Schmidt S.
Prediction of shoulder dystocia – combining foetal weight estimation by ultrasound
and maternal risk factors – a solution for the dilemma?.
Z Geburtshilfe Neonatol.
2009;
213
180-185
7
Jolly M C, Sebire N J, Harris J P et al.
Risk factors for macrosomia and its clinical consequences: a study of 350311 pregnancies.
Eur J Obstet Gynecol Reprod Biol.
2003;
111
9-14
8
Mathew M, Machado L, Al-Ghabshi R et al.
Fetal macrosomia. Risk factor and outcome.
Saudi Med J.
2005;
26
96-100
9
Stotland N E, Caughey A B, Breed E M et al.
Risk factors and obstetric complications associated with macrosomia.
Int J Gynaecol Obstet.
2004;
87
220-226
10
Ecker J L, Greenberg J A, Norwitz E R et al.
Birth weight as a predictor of brachial plexus injury.
Obstet Gynecol.
1997;
89
643-647
11
Gilbert W M, Nesbitt T S, Danielsen B.
Associated factors in 1611 cases of brachial plexus injury.
Obstet Gynecol.
1999;
93
536-540
12
Peleg D, Hasnin J, Shalev E.
Fractured clavicle and Erb’s palsy unrelated to birth trauma.
Am J Obstet Gynecol.
1997;
177
1038-1040
13
Abuhamad A Z.
ACOG Practice Bulletin, clinical management guidelines for obstetrician-gynecologists
number 98, October 2008 (replaces Practice Bulletin number 58, December 2004). Ultrasonography
in pregnancy.
Obstet Gynecol.
2008;
112
951-961
14
Surkan P J, Hsieh C C, Johansson A L et al.
Reasons for increasing trends in large for gestational age births.
Obstet Gynecol.
2004;
104
720-726
15
Rempen A.
Vaginal ultrasonography in the first trimester. II. Quantitative parameters.
Z Geburtshilfe Perinatol.
1991;
195
163-171
16
Gardosi J, Geirsson R T.
Routine ultrasound is the method of choice for dating pregnancy.
Br J Obstet Gynaecol.
1998;
105
933-936
17
Kurmanavicius J, Wright E M, Royston P et al.
Fetal ultrasound biometry: 1. Head reference values.
Br J Obstet Gynaecol.
1999;
106
126-135
18
Kurmanavicius J, Wright E M, Royston P et al.
Fetal ultrasound biometry: 2. Abdomen and femur length reference values.
Br J Obstet Gynaecol.
1999;
106
136-143
19
Eichhorn K H, Schramm T, Bald R et al.
DEGUM grade I quality standards in obstetric ultrasound diagnosis during the 19th –22nd week of pregnancy.
Ultraschall in Med.
2006;
27
185-187
20
European Federation of Societies for Ultrasound in Medicine and Biology. Minimum training
recommendations for the practice of medical ultrasound.
Ultraschall in Med.
2006;
27
79-105
21
Hadlock F P, Harrist R B, Sharman R S et al.
Estimation of fetal weight with the use of head, body, and femur measurements – a
prospective study.
Am J Obstet Gynecol.
1985;
151
333-337
22
Schild R L, Sachs C, Fimmers R et al.
Sex-specific fetal weight prediction by ultrasound.
Ultrasound Obstet Gynecol.
2004;
23
30-35
23
Merz E, Lieser H, Schicketanz K H et al.
Intrauterine fetal weight assessment using ultrasound. A comparison of several weight
assessment methods and development of a new formula for the determination of fetal
weight.
Ultraschall in Med.
1988;
9
15-24
24
Pitman E JG.
A note on normal correlation.
Biometrika.
1939;
31
9-12
25 Snedecor G W, Cochran W G. Comparison of two correlated variances in paired samples.
In Statistical Methods.. 8 ed. Ames: Iowa State University Press; 1989: 192-193
26
Bland J M, Altman D G.
Statistical methods for assessing agreement between two methods of clinical measurement.
Lancet.
1986;
1
307-310
27
Melamed N, Yogev Y, Meizner I et al.
Sonographic fetal weight estimation: which model should be used?.
J Ultrasound Med.
2009;
28
617-629
28
Siemer J, Wolf T, Hart N et al.
Increased accuracy of fetal weight estimation with a gender-specific weight formula.
Fetal Diagn Ther.
2008;
24
321-326
29
Deter R L, Hadlock F P.
Use of ultrasound in the detection of macrosomia: a review.
J Clin Ultrasound.
1985;
13
519-524
30
Coomarasamy A, Connock M, Thornton J et al.
Accuracy of ultrasound biometry in the prediction of macrosomia: a systematic quantitative
review.
BJOG.
2005;
112
1461-1466
31
Loetworawanit R, Chittacharoen A, Sututvoravut S.
Intrapartum fetal abdominal circumference by ultrasonography for predicting fetal
macrosomia.
J Med Assoc Thai.
2006;
89
S60-S64
32
Henrichs C, Magann E F, Brantley K L et al.
Detecting fetal macrosomia with abdominal circumference alone.
J Reprod Med.
2003;
48
339-342
33
Maticot-Baptista D, Collin A, Martin A et al.
Prevention of shoulder dystocia by an ultrasound selection at the beginning of labour
of foetuses with large abdominal circumference.
J Gynecol Obstet Biol Reprod.
2007;
36
42-49
34
Sacks D A, Chen W.
Estimating fetal weight in the management of macrosomia.
Obstet Gynecol Surv.
2000;
55
229-239
35
Neiger R.
Fetal macrosomia in the diabetic patient.
Clin Obstet Gynecol.
1992;
35
138-150
36
Zimmer E Z, Divon M Y.
Sonographic diagnosis of IUGR-macrosomia.
Clin Obstet Gynecol.
1992;
35
172-184
37
Mongelli M, Gardosi J.
Gestation-adjusted projection of estimated fetal weight.
Acta Obstet Gynecol Scand.
1996;
75
28-31
Dr. Sven Kehl
Frauenklinik, Universitätsmedizin Mannheim
Theodor-Kutzer-Ufer 1 – 3
68176 Mannheim
Germany
Phone: ++ 49/6 21/3 83 34 47
Fax: ++ 49/6 21/3 83 38 14
Email: sven.kehl@umm.de