Zusammenfassung
Ziel: Die Machbarkeit der sauerstoffverstärkten MRT der Lunge bei 3 Tesla sollte beurteilt
und die Signalcharakteristika mit 1,5 Tesla verglichen werden. Material und Methoden: 13 Probanden unterzogen sich einer sauerstoffverstärkten MRT-Untersuchung bei 1,5
und 3 T mit einer koronar orientierten T 1-gewichteten, einschichtigen, nichtselektiven
Inversion-Recovery-Half-Fourier-Fast-Spin-Echo-Sequenz mit Atem- und EKG-Triggerung.
Je 40 Einzelmessungen wurden unter Raumluftatmung und unter Sauerstoffatmung (15 l/min
über eine Atemmaske) durchgeführt. Das Signal-Rausch-Verhältnis (SNR) von Lungengewebe
wurde mithilfe eines Differenzbildverfahrens ermittelt. Die Bildqualität der Einzelakquisitionen
wurde visuell beurteilt. Der Mittelwert des sauerstoffvermittelten relativen Signalanstiegs
und sein regionaler Variationskoeffizient wurden berechnet und der Signalanstieg in
Parameterkarten farbcodiert dargestellt. Verteilung und Heterogenität des Signalanstiegs
in den Parameterkarten bei beiden Feldstärken wurden visuell verglichen. Ergebnisse: Der mittlere relative Signalanstieg durch Sauerstoffatmung betrug 13 % (± 5.6 %)
bei 1,5 T und 9.0 % (± 8.0 %) bei 3 T. Ein signifikant höherer Wert des regionalen
Variationskoeffizienten zeigte sich bei 3 T. Auf den Parameterkarten zeigte sich visuell
und quantitativ bei 3 T eine deutlich inhomogenere Verteilung des Signalanstiegs.
Das SNR unterschied sich bei den beiden Feldstärken nicht signifikant, war jedoch
bei 3 T tendenziell (um ca. 10 %) höher. Schlussfolgerung: Die sauerstoffverstärkte MRT-Bildgebung der Lunge lässt sich prinzipiell bei 3 T
durchführen, wenngleich der Signalanstieg bei 3 T derzeit im Vergleich zu 1,5 T heterogener
und etwas geringer ist.
Abstract
Purpose: To assess the feasibility of oxygen-enhanced MRI of the lung at 3 Tesla and to compare
signal characteristics with 1.5 Tesla. Materials and Methods: 13 volunteers underwent oxygen-enhanced lung MRI at 1.5 and 3 T with a T 1-weighted
single-slice non-selective inversion-recovery single-shot half-Fourier fast-spin-echo
sequence with simultaneous respiratory and cardiac triggering in coronal orientation.
40 measurements were acquired during room air breathing and subsequently during oxygen
breathing (15 L/min, close-fitting face-mask). The signal-to-noise ratio (SNR) of
the lung tissue was determined with a difference image method. The image quality of
all acquisitions was visually assessed. The mean values of the oxygen-induced relative
signal enhancement and its regional coefficient of variation were calculated and the
signal enhancement was displayed as color-coded parameter maps. Oxygen-enhancement
maps were visually assessed with respect to the distribution and heterogeneity of
the oxygen-related signal enhancement at both field strengths. Results: The mean relative signal enhancement due to oxygen breathing was 13 % (± 5.6 %) at
1.5 T and of 9.0 % (± 8.0 %) at 3 T. The regional coefficient of variation was significantly
higher at 3 T. Visual and quantitative assessment of the enhancement maps showed considerably
less homogeneous distribution of the signal enhancement at 3 T. The SNR was not significantly
different but showed a trend to slightly higher values (increase of about 10 %) at
3 T. Conclusion: Oxygen-enhanced pulmonary MRI is feasible at 3 Tesla. However, signal enhancement
is currently more heterogeneous and slightly lower at 3 T.
Key words
3 Tesla MRI - oxygen-enhanced lung MRI - lung MRI - high-field lung MRI
References
1
Edelman R R, Hatabu H, Tadamura E et al.
Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced
magnetic resonance imaging.
Nat Med.
1996;
2
1236-1239
2
Ohno Y, Chen Q, Hatabu H.
Oxygen-enhanced magnetic resonance ventilation imaging of lung.
Eur J Radiol.
2001;
37
164-171
3
Ohno Y, Hatabu H.
Basics concepts and clinical applications of oxygen-enhanced MR imaging.
Eur J Radiol.
2007;
64
320-328
4
Muller C J, Schwaiblmair M, Scheidler J et al.
Pulmonary diffusing capacity: assessment with oxygen-enhanced lung MR imaging preliminary
findings.
Radiology.
2002;
222
499-506
5
Nakagawa T, Sakuma H, Murashima S et al.
Pulmonary ventilation-perfusion MR imaging in clinical patients.
J Magn Reson Imaging.
2001;
14
419-424
6
Arnold J F, Kotas M, Fidler F et al.
Quantitative regional oxygen transfer imaging of the human lung.
J Magn Reson Imaging.
2007;
26
637-645
7
Dietrich O, Losert C, Attenberger U et al.
Fast oxygen-enhanced multislice imaging of the lung using parallel acquisition techniques.
Magn Reson Med.
2005;
53
1317-1325
8
Bergin C J, Glover G H, Pauly J M.
Lung parenchyma: magnetic susceptibility in MR imaging.
Radiology.
1991;
180
845-848
9
Fink C, Puderbach M, Biederer J et al.
Lung MRI at 1.5 and 3 Tesla: observer preference study and lesion contrast using five
different pulse sequences.
Invest Radiol.
2007;
42
377-383
10
Molinari F, Eichinger M, Risse F et al.
Navigator-triggered oxygen-enhanced MRI with simultaneous cardiac and respiratory
synchronization for the assessment of interstitial lung disease.
J Magn Reson Imaging.
2007;
26
1523-1529
11
Molinari F, Gaudino S, Fink C et al.
Simultaneous cardiac and respiratory synchronization in oxygen-enhanced magnetic resonance
imaging of the lung using a pneumotachograph for respiratory monitoring.
Invest Radiol.
2006;
41
476-485
12
Vaninbroukx J, Bosmans H, Sunaert S et al.
The use of ECG and respiratory triggering to improve the sensitivity of oxygen-enhanced
proton MRI of lung ventilation.
Eur Radiol.
2003;
13
1260-1265
13
Molinari F, Puderbach M, Eichinger M et al.
Oxygen-enhanced magnetic resonance imaging: influence of different gas delivery methods
on the T 1-changes of the lungs.
Invest Radiol.
2008;
43
427-432
14
Prisk G K, Yamada K, Henderson A C et al.
Pulmonary perfusion in the prone and supine postures in the normal human lung.
J Appl Physiol.
2007;
103
883-894
15
Ohno Y, Oshio K, Uematsu H et al.
Single-shot half-Fourier RARE sequence with ultra-short inter-echo spacing for lung
imaging.
J Magn Reson Imaging.
2004;
20
336-339
16
Mai V M, Liu B, Li W et al.
Influence of oxygen flow rate on signal and T(1) changes in oxygen-enhanced ventilation
imaging.
J Magn Reson Imaging.
2002;
16
37-41
17
Bankier A A, O’Donnell C R, Mai V M et al.
Impact of lung volume on MR signal intensity changes of the lung parenchyma.
J Magn Reson Imaging.
2004;
20
961-966
18
Dietrich O, Raya J G, Reeder S B et al.
Measurement of signal-to-noise ratios in MR images: influence of multichannel coils,
parallel imaging, and reconstruction filters.
J Magn Reson Imaging.
2007;
26
375-385
19
Dehnert C, Risse F, Ley S et al.
Magnetic resonance imaging of uneven pulmonary perfusion in hypoxia in humans.
American journal of respiratory and critical care medicine.
2006;
174
1132-1138
20
Levin D L, Buxton R B, Spiess J P et al.
Effects of age on pulmonary perfusion heterogeneity measured by magnetic resonance
imaging.
J Appl Physiol.
2007;
102
2064-2070
21
Hintze C, Stemmer A, Bock M et al.
A hybrid breath hold and continued respiration-triggered technique for time-resolved
3D MRI perfusion studies in lung cancer.
Fortschr Röntgenstr.
2010;
182
45-52
22
Ley-Zaporozhan J, Ley S, Sommerburg O et al.
Clinical application of MRI in children for the assessment of pulmonary diseases.
Fortschr Röntgenstr.
2009;
181
419-432
23
Tetzlaff R, Eichinger M, Schobinger M et al.
Semiautomatic assessment of respiratory motion in dynamic MRI – comparison with simultaneously
acquired spirometry.
Fortschr Röntgenstr.
2008;
180
961-967
24
Wolf T, Anjorin A, Posselt H et al.
MRT-basierte Flussmessungen im Truncus pulmonalis zur Detektion einer pulmonal-arteriellen
Hypertonie in Patienten mit zystischer Fibrose.
Fortschr Röntgenstr.
2009;
181
139-146
25
Nael K, Michaely H J, Lee M et al.
Dynamic pulmonary perfusion and flow quantification with MR imaging, 3.0 T vs. 1.5
T: initial results.
J Magn Reson Imaging.
2006;
24
333-339
26
Nael K, Saleh R, Nyborg G K et al.
Pulmonary MR perfusion at 3.0 Tesla using a blood pool contrast agent: Initial results
in a swine model.
J Magn Reson Imaging.
2007;
25
66-72
27
Ohno Y, Koyama H, Nogami M et al.
Dynamic oxygen-enhanced MRI versus quantitative CT: pulmonary functional loss assessment
and clinical stage classification of smoking-related COPD.
Am J Roentgenol.
2008;
190
W93-99
28
Ohno Y, Iwasawa T, Seo J B et al.
Oxygen-enhanced magnetic resonance imaging versus computed tomography: multicenter
study for clinical stage classification of smoking-related chronic obstructive pulmonary
disease.
American journal of respiratory and critical care medicine.
2008;
177
1095-1102
29
Stock K W, Chen Q, Morrin M et al.
Oxygen-enhanced magnetic resonance ventilation imaging of the human lung at 0.2 and
1.5T.
J Magn Reson Imaging.
1999;
9
838-841
30
Loffler R, Muller C J, Peller M et al.
Optimization and evaluation of the signal intensity change in multisection oxygen-enhanced
MR lung imaging.
Magn Reson Med.
2000;
43
860-866
31
Chen Q, Jakob P M, Griswold M A et al.
Oxygen enhanced MR ventilation imaging of the lung.
MAGMA Magn Reson Mater Phy.
1998;
7
153-161
32
Jakob P M, Hillenbrand C M, Wang T et al.
Rapid quantitative lung (1)H T(1) mapping.
J Magn Reson Imaging.
2001;
14
795-799
33
Nichols M B, Paschal C B.
Measurement of longitudinal (T1) relaxation in the human lung at 3.0 Tesla with tissue-based
and regional gradient analyses.
J Magn Reson Imaging.
2008;
27
224-228
34
Dietrich O, Raya J G, Fasol U et al.
Oxygen-enhanced MRI of the lung at 3 Tesla: Feasibility and T 1 relaxation times.
Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM).
2006;
14
1307
35
Dietrich O, Reiser M F, Schoenberg S O.
Artifacts in 3-T MRI: physical background and reduction strategies.
Eur J Radiol.
2008;
65
29-35
36
Puderbach M, Ohno Y, Kawamitsu H et al.
Influence of inversion pulse type in assessing lung-oxygen-enhancement by centrically-reordered
non-slice-selective inversion-recovery half-Fourier single-shot turbo spin-echo (HASTE)
sequence.
J Magn Reson Imaging.
2007;
26
1133-1138
PD Dr. Olaf Dietrich
Josef Lissner Laboratory for Biomedical Imaging, Institut für Klinische Radiologie,
Ludwig-Maximilians-Universität München, Klinikum Großhadern
Marchioninistr. 15
81377 München
Telefon: ++ 49/89/70 95 46 22
Fax: ++ 49/89/70 95 46 27
eMail: od@dtrx.net