Zusammenfassung
Dem glutamatergen System wird eine zunehmende Rolle in der Pathophysiologie affektiver Störungen zugeschrieben. Der Neurotransmitter Glutamat ist der wichtigste exzitatorische Transmitter im zentralen Nervensystem. An der Regulation des glutamatergen Systems sind Gliazellen maßgeblich beteiligt. In verschiedenen Untersuchungen wurde eine Dysfunktion bzw. reduzierte Anzahl von Gliazellen bei Patienten mit depressiver Störung beschrieben. Daraus könnte sich bei der Depression eine Überfunktion des glutamatergen Systems mit einer toxisch wirkenden Akkumulation von Glutamat entwickeln. Gängige Antidepressiva greifen in den Glutamat-Metabolismus ein und antiglutamaterge Substanzen (z. B. Riluzol) und NMDA-Rezeptor-Antagonisten (z. B. Ketamin) zeigten antidepressive Wirksamkeit in hauptsächlich präklinischen und einigen klinischen Studien. Weitere Substanzen sind in Prüfung. Diese Übersicht liefert Einblicke über die neuesten Entwicklungen auf diesem Gebiet.
Abstract
An increasing significance has been attributed to the glutamatergic system in the pathophysiology of affective disorders. Glutamate is the most important excitatory neurotransmitter in the central nervous system. Glia cells are crucial regulators of the glutamatergic metabolism. Several studies have reported a dysfunction or reduced number of glia cells in patients suffering from depression. This could result in hyperfunctioning of the glutamatergic system leading to a toxic accumulation of glutamate. Commonly used antidepressants influence the glutamate metabolism and antiglutamatergic substances [e. g., riluzol] and NMDA-receptor antagonists [e. g., ketamine] have shown antidepressant properties in mostly preclinical and some clinical trials. Further substances are currently being investigated. This review provides an insight into the newest developments in this field.
Schlüsselwörter
Glutamat - Depression - NMDA Rezeptor - Ketamin - Gliazelle
Keywords
glutamate - depression - NMDA receptor - ketamine - glia cells
Literatur
1
Ustün T B, Ayuso-Mateos J L, Chatterji S et al.
Global burden of depressive disorders in the year 2000.
Br J Psychiatry.
2004;
184
386-392
2
Paykel E S, Brugha T, Fryers T.
Size and burden of depressive disorders in Europe.
Eur Neuropsychopharmacol.
2005;
15
411-423
3
Kessler R C, Chiu W T, Demler O et al.
Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication.
Arch Gen Psychiatry.
2005;
62
617-627
4
Trivedi M H, Rush A J, Wisniewski S R et al.
STAR*D Study Team. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D. Implications for clinical practice.
Am J Psychiatry.
2006;
163
28-40
5
Thase M E.
Therapeutic alternatives for difficult-to-treat depression: a narrative review of the state of the evidence.
CNS Spectr.
2004;
9
808-821
6
DeBattista C.
Augmentation and combination strategies for depression.
J Psychopharmacol.
2006;
20
11-18
7
Fava M, Rush A J.
Current status of augmentation and combination treatments for major depressive disorder: a literature review and a proposal for a novel approach to improve practice.
Psychother Psychosom.
2006;
75
139-153
8
Frieling H, Hillemacher T, Demling J H et al.
New options in the treatment of depression.
Fortschr Neurol Psychiatr.
2007;
75
641-652
Review. German
9
Kugaya A, Sanacora G.
Beyond monoamines: glutamatergic function in mood disorders.
CNS Spectrom.
2005;
10
808-819
10
Hashimoto K.
Emerging role of glutamate in the pathophysiology of major depressive disorder.
Brain Res Rev.
2009;
61
105-123
11
Pittenger C, Sanacora G, Krystal J H.
The NMDA receptor as a therapeutic target in major depressive disorder.
CNS Neurol Disord Drug Targets.
2007;
6
101-115
12
Rajkowska G, Miguel-Hidalgo J J.
Gliogenesis and glial pathology in depression.
CNS Neurol Disord Drug Targets.
2007;
6
219-233
13
Mao L, Tang Q et al.
Regulation of MAPK/ERK phosphorylation via ionotropic glutamate receptors in cultured rat striatal neurons.
Eur J Neurosci.
2004;
19
1207-1216
14
Mao L, Yang L et al.
Role of protein phosphatase 2A in mGluR5-regulated MEK/ERK phosphorylation in neurons.
J Biol Chem.
2005;
280
12602-12610
15
Riccio A, Ginty D D.
What a privilege to reside at the synapse: NMDA receptor signaling to CREB.
Nature Neuroscience.
2002;
5
389-390
16
Chourbaji S, Brandwein C, Gass P.
Altering BDNF expression by genetics and/or environment: Impact for emotional and depression-like behaviour in laboratory mice.
Neurosci Biobehav Rev.
2010;
[Epub ahead of print]
17
Gass P, Hellweg R.
Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker for affective disorders?.
Int J Neuropsychopharmacol.
2010;
Epub 2009 Dec 9
13
1-4
18
Hellweg R, Ziegenhorn A, Heuser I et al.
Serum concentrations of nerve growth factor and brain-derived neurotrophic factor in depressed patients before and after antidepressant treatment.
Pharmacopsychiatry.
2008;
41
66-71
19
Hardingham G E, Fukunaga Y, Bading H.
Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways.
Nat Neurosci.
2002;
5
405-414
20
Ivanov A, Pellegrino C, Rama S et al.
Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons.
J Physiol.
2006;
572
789-798
21
Hardingham G E, Fukunaga Y, Bading H.
Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways.
Nat Neurosci.
2002;
5
405-414
22
Kim J S, Schmid-Burgk W, Claus D et al.
Increased serum glutamate in depressed patients.
Arch Psychiatr Nervenkr.
1982;
232
299-304
23
Altamura C A, Mauri M C, Ferrara A et al.
Plasma and platelet excitatory amino acids in psychiatric disorders.
Am J Psychiatry.
1993;
150
1713-1731
24
Mitani H, Shirayama Y, Yamada T et al.
Correlation between plasma levels of glutamate, alanine and serine with severity of depression.
Prog Neuropsychopharmacol Biol Psychiatry.
2006;
30
1155-1158
25
Levine J, Panchalingam K, Rapoport A et al.
Increased cerebrospinal fluid glutamine levels in depressed patients.
Biol Psychiatry.
2000;
47
586-593
26
Maes M, Verkerk R, Vandoolaeghe E et al.
Serum levels of excitatory amino acids, serine, glycine, histidine, threonine, taurine, alanine and arginine in treatment-resistant depression: modulation by treatment with antidepressants and prediction of clinical responsivity.
Acta Psychiatr Scand.
1998;
97
302-308
27
Hashimoto K, Sawa A, Iyo M.
Increased levels of glutamate in brains from patients with mood disorders.
Biol Psychiatry.
2007;
62
1310-1316
28
Francis P T, Poynton A, Lowe S L et al.
Brain amino acid concentrations and Ca2 + -dependent release in intractable depression assessed antemortem.
Brain Res.
1989;
494
315-324
29
Law A J, Deakin J F.
Asymmetrical reductions of hippocampal NMDAR1 glutamate receptor mRNA in the psychoses.
NeuroReport.
2001;
12
2971-2974
30
Nudmamud-Thanoi S, Reynolds G P.
The NR 1 subunit of the glutamate/NMDA receptor in the superior temporal cortex in schizophrenia and affective disorders.
Neurosci Lett.
2004;
372
173-177
31
Beneyto M, Kristiansen L V, Oni-Orisan A et al.
Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders.
Neuropsychopharmacology.
2007;
32
1888-1902
32
Feyissa A M, Chandran A, Stockmeier C A et al.
Reduced levels of NR 2A and NR 2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression.
Prog Neuropsychopharmacol Biol Psychiatry.
2009;
33
70-75
33
Karolewicz B, Feyissa A M, Chandran A et al.
Glutamate receptors expression in postmortem brain from depressed subjects.
Biol Psychiatry.
2009;
65
177
34
Hasler G.
Abnormal prefrontal glutamatergic and GABAeric systems in mood and anxiety disorders.
Biol Psychiatry.
2009;
65
176-177
35
Karolewicz B, Stockmeier C A, Ordway G A et al.
Elevated levels of the NR 2C subunit of the NMDA receptor in the locus coeruleus in depression.
Neuropsychopharmacol.
2005;
30
1557-1567
36
Meador-Woodruff J H, Hogg Jr A J, Smith R E.
Striatal ionotropic glutamate receptor expression in schizophrenia, bipolar disorder, and major depressive disorder.
Brain Res Bull.
2001;
55
631-640
37
Choudary P V, Molnar M, Evans S J et al.
Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression.
Proc Natl Acad Sci USA.
2005;
102
15653-15658
38
Sanacora G, Gueorguieva R, Epperson C N et al.
Subtype-specific alterations of -aminobutyric acid and glutamate in patients with major depression.
Arch Gen Psychiatry.
2004;
61
705-713
39
Auer D P, Putz B, Kraft E et al.
Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study.
Biol Psychiatry.
2000;
47
305-313
40
Ajilore O, Haroon E, Kumaran S et al.
Measurement of brain metabolites in patients with type 2 diabetes and major depression using proton magnetic resonance spectroscopy.
Neuropsychopharmacology.
2007;
32
1224-1231
41
Hasler G, Veen J W, Tumonis van der T et al.
Reduced prefrontal glutamate/glutamine and -aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy.
Arch Gen Psychiatry.
2007;
64
193-200
42
Block W, Träber F, Widdern von O et al.
Proton MR spectroscopy of the hippocampus at 3T in patients with unipolar major depressive disorder: correlates and predictors of treatment responses.
Int J Neuropsychopharmacol.
2009;
12
415-422
43
Kendler K S, Kuhn J, Prescott C A.
The interrelationship of neuroticism, sex, and stressful life events in the prediction of episodes of major depression.
Am J Psychiatry.
2004;
161
631-636
44
Sapolsky R M.
The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death.
Biol Psychiatry.
2000;
48
755-765
45
Moghaddam B.
Stress activation of glutamate neurotransmission in the prefrontal cortex: implications for dopamine-associated psychiatric disorders.
Biol Psychiatry.
2002;
51
775-787
46
Bagley J, Moghaddam B.
Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus following repeated stress: effects of pretreatment with saline or diazepam.
Neuroscience.
1997;
77
65-73
47
Banasr M, Valentine G W, Li X Y et al.
Chronic unpredictable stress decreases cell proliferation in the cerebral cortex of the adult rat.
Biol Psychiatry.
2007;
62
496-504
48
Czeh B, Lucassen P J.
What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated?.
Eur Arch Psychiatry Clin Neurosci.
2007;
257
250-60
49
Czeh B, Muller-Keuker J I, Rygula R et al.
Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex: hemispheric asymmetry and reversal by fluoxetine treatment.
Neuropsychopharmacology.
2007;
32
1490-1503
50
Nowak G, Trullas R, Layer R T et al.
Adaptive changes in the N-methyl-D-aspartate receptor complex after chronic treatment with imipramine and 1-aminocyclopropanecarboxylic acid.
J Pharmacol Exp Ther.
1993;
265
1380-1386
51
Nowak G, Li Y, Paul I A.
Adaptation of cortical but not hippocampal NMDA receptors after chronic citalopram treatment.
Eur J Pharmacol.
1996;
295
75-85
52
Nowak G, Legutko B, Skolnick P et al.
Adaptation of cortical NMDA receptors by chronic treatment with specific serotonin reuptake inhibitors.
Eur J Pharmacol.
1998;
342
367-370
53
Paul I A, Nowak G, Layer R T et al.
Adaptation of the N-methyl-D-aspartate receptor complex following chronic antidepressant treatments.
J Pharmacol Exp Ther.
1994;
269
95-102
54
Skolnick P, Layer R T, Popik P et al.
Adaptation of N-methyl-D-aspartate (NMDA) receptors following antidepressant treatment: implications for the pharmacotherapy of depression.
Pharmacopsychiatry.
1996;
29
23-26
55
Boyer P A, Skolnick P, Fossom L H.
Chronic administration of imipramine and citalopram alters the expression of NMDA receptor subunit mRNAs in mouse brain.
J Mol Neurosci.
1998;
10
219-233
56
Michael-Titus A T, Bains S, Jeetle J et al.
Imipramine and phenelzine decrease glutamate overflow in the prefrontal cortex – a possible mechanism of neuroprotection in major depression?.
Neuroscience.
2000;
100
681-684
57
Tokarski K, Bobula B, Wabno J et al.
Repeated administration of imipramine attenuates glutamatergic transmission in rat frontal cortex.
Neuroscience.
2008;
153
789-795
58
Golembiowska K, Dziubina A.
Effect of acute and chronic administration of citalopram on glutamate and aspartate release in the rat prefrontal cortex.
Pol J Pharmacol.
2000;
52
441-448
59
Sernagor E, Kuhn D, Vyklicky Jr L et al.
Open channel block of NMDA receptor responses evoked by tricyclic antidepressants.
Neuron.
1989;
2
1221-1227
60
Cai Z, McCaslin P P.
Amitriptyline, desipramine, cyproheptadine and carbamazepine, in concentrations used therapeutically, reduce kainate- and Nmethyl- D-aspartate-induced intracellular Ca2 + levels in neuronal culture.
Eur J Pharmacol.
1992;
219
53-57
61
Watanabe Y, Saito H, Abe K.
Tricyclic antidepressants block NMDA receptor-mediated synaptic responses and induction of long-term potentiation in rat hippocampal slices.
Neuropharmacology.
1993;
32
479-486
62
Takebayashi M, Kagaya A, Inagaki M et al.
Effects of antidepressants on gamma-aminobutyric acid- and N-methyl-D-aspartate-induced intracellular Ca(2 + ) concentration increases in primary cultured rat cortical neurons.
Neuropsychobiology.
2000;
42
120-126
63
Bonanno G, Giambelli R, Raiteri L et al.
Chronic antidepressants reduce depolarization-evoked glutamate release and protein interactions favoring formation of SNARE complex in hippocampus.
J Neurosci.
2005;
25
3270-3279
64
Szasz B K, Mike A, Karoly R et al.
Direct inhibitory effect of fluoxetine on N-methyl-D-aspartate receptors in the central nervous system.
Biol Psychiatry.
2007;
62
1303-1309
65
Mayer A, Szasz B K, Kiss J P.
Inhibitory effect of antidepressants on the NMDA-evoked ([3] H)noradrenaline release from rat hippocampal slices.
Neurochem Int.
2009;
55
383-388
66
Svenningsson P, Tzavara E T, Witkin J M et al.
Involvement of striatal and extrastriatal DARPP-32 in biochemical and behavioral effects of fluoxetine (Prozac).
Proc Natl Acad Sci USA.
2002;
99
3182-3187
67
Svenningsson P, Bateup H, Qi H et al.
Involvement of AMPA receptor phosphorylation in antidepressant actions with special reference to tianeptine.
Eur J Neurosci.
2007;
26
3509-3517
68
Du J, Suzuki K, Wei Y et al.
The Anticonvulsants lamotrigine, riluzole and valproate differentially regulate AMPA receptor membrane localization: relationship to clinical effects in mood disorders.
Neuropsychopharmacology.
2007;
32
793-802
69
Martinez-Turrillas R, Frechilla D, De lRio J.
Chronic antidepressant treatment increases the membrane expression of AMPA receptors in rat hippocampus.
Neuropharmacology.
2002;
43
1230-1237
70
Barbon A, Popoli M, La V ia L et al.
Regulation of editing and expression of glutamate alpha-amino-propionic-acid [AMPA]/kainate receptors by antidepressant drugs.
Biol Psychiatry.
2006;
59
713-720
71
Bobula B, Tokarski K, Hess G.
Repeated administration of antidepressants decreases field potenzials in rat frontal cortex.
Neuroscience.
2003;
120
765-769
72
Bobula B, Hess G.
Antidepressant treatments-induced modifications of glutamatergic transmission in rat frontal cortex.
Pharmacol Rep.
2008;
60
865-871
73
Dixon J F, Hokin L E.
Lithium acutely inhibits and chronically up-regulates and stabilizes glutamate uptake by presynaptic nerve endings in mouse cerebral cortex.
Proc Natl Acad Sci USA.
1998;
95
8363-8368
74
Greenhill S D, Jones R S.
Diverse antiepileptic drugs increase the ratio of background synaptic inhibition to excitation and decrease neuronal excitability in neurones of the rat entorhinal cortex in vitro.
Neuroscience.
2010;
167
456-474
75
Trullas R, Skolnick P.
Functional antagonists at the NMDA receptor complex exhibit antidepressant actions.
Eur J Pharmacol.
1990;
185
1-10
76
Kos T, Legutko B, Danysz W et al.
Enhancement of antidepressant-like effects but not brain-derived neurotrophic factor mRNA expression by the novel N-methyl-D-aspartate receptor antagonist neramexane in mice.
J Pharmacol Exp Ther.
2006;
318
1128-1136
77
Chaturvedi H K, Bapna J S, Chandra D.
Effect of fluvoxamine and N-methyl-Daspartate receptor antagonists on shock-induced depression in mice.
Indian J Physiol Pharmacol.
2001;
45
199-207
78
Yilmaz A, Schulz D, Aksoy A et al.
Prolonged effect of an anesthetic dose of ketamine on behavioral despair.
Pharmacol Biochem Behav.
2002;
71
341-344
79
Maeng S, Zarate Jr C A, Du J et al.
Cellular mechanisms underlying the antidepressant effects of ketamine: role of &alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors.
Biol Psychiatry.
2008;
63
349-352
80
Garcia L S, Comim C M, Valvassori S S et al.
Chronic administration of ketamine elicits antidepressant-like effects in rats without affecting hippocampal brain-derived neurotrophic factor protein levels.
Basic Clin Pharmacol Toxicol.
2008;
103
502-506
81
Garcia L S, Comim C M, Valvassori S S et al.
Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus.
Prog Neuropsychopharmacol Biol Psychiatry.
2008;
32
140-144
82
Engin E, Treit D, Dickson C T.
Anxiolytic- and antidepressant-like properties of ketamine in behavioral and neurophysiological animal models.
Neuroscience.
2009;
161
359-369
Erratum in: Neuroscience 2009; 162: 1438 – 1439
83
Kos T, Popik P, Pietraszek M et al.
Effect of 5-HT3 receptor antagonist MDL 72 222 on behaviors induced by ketamine in rats and mice.
Eur Neuropsychopharmacol.
2006;
16
297-310
84
Maj J, Rogóz Z.
Synergistic effect of amantadine and imipramine in the forced swimming test.
Pol J Pharmacol.
2000;
52
111-114
85
Almeida R C, Souza D G, Soletti R C et al.
Involvement of PKA, MAPK/ERK and CaMKII, but not PKC in the acute antidepressant-like effect of memantine in mice.
Neurosci Lett.
2006;
395
93-97
86
Rogoz Z, Skuza G, Maj J et al.
Synergistic effect of uncompetitive NMDA receptor antagonists and antidepressant drugs in the forced swimming test in rats.
Neuropharmacology.
2002;
42
1024-1030
87
Banasr M, Chowdhury G M, Terwilliger R et al.
Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioural deficits by the glutamate-modulating drug riluzole.
Mol Psychiatry.
2008;
[Epub ahead of print]
88
Alt A, Witkin J M, Bleakman D.
A role for AMPA receptors in mood disorders.
Curr Pharm Des.
2005;
11
1511-1527
89
Bleakman D, Alt A, Witkin J M.
AMPA receptors in the therapeutic management of depression.
CNS Neurol Disord Drug Targets.
2007;
6
117-126
90
O’Neill M J, Witkin J M.
AMPA receptor potentiators: application for depression and Parkinson’s disease.
Curr Drug Targets.
2007;
8
603-620
91
Chourbaji S, Vogt M A, Fumagalli F et al.
AMPA receptor subunit 1 [GluR-A] knockout mice model the glutamate hypothesis of depression.
FASEB J.
2008;
22
3129-3134
92
Belozertseva V, Kos T, Popik P et al.
Antidepressant-like effects of mGluR1 and mGluR5 antagonists in the rat forced swim and the mouse tail suspension tests.
Eur Neuropsychopharmacol.
2007;
17
172-179
93
Li X, Need A B, Baez M et al.
Metabotropic glutamate 5 receptor antagonism is associated with antidepressant-like effects in mice.
J Pharmacol Exp Ther.
2006;
319
254-259
94
Chaki S, Yoshikawa R, Hirota S et al.
MGS0039: a potent and selective group II metabotropic glutamate receptor antagonist with antidepressant-like activity.
Neuropharmacology.
2004;
46
457-467
95
Bespalov A Y, Gaalen M M, Sukhotina I A et al.
Behavioral characterization of the mGlu group II/III receptor antagonist, LY-341 495, in animal models of anxiety and depression.
Eur J Pharmacol.
2008;
592
96-102
96
Pałucha van A, Tatarczyńska E, Brański P et al.
Group III mGlu receptor agonists produce anxiolytic- and antidepressant-like effects after central administration in rats.
Neuropharmacology.
2004;
46
151-159
97
Palucha A, Klak K, Branski P et al.
Activation of the mGlu7 receptor elicits antidepressant-like effects in mice.
Psychopharmacology.
2007;
194
555-562
98
Cryan J F, Holmes A.
The ascent of mouse: advances in modelling human depression and anxiety.
Nat Rev Drug Discov.
2005;
4
775-790
99
Benoit E, Escande D.
Riluzole specifically blocks inactivated Na channels in myelinated nerve fibre.
Pflugers Arch.
1991;
419
603-609
100
Zarate Jr C A, Payne J L, Quiroz J et al.
An open-label trial of riluzole in patients with treatment-resistant major depression.
Am J Psychiatry.
2004;
161
171-174
101
Sanacora G, Kendell S F, Fenton L et al.
Riluzole augmentation for treatment-resistant depression.
Am J Psychiatry.
2004;
161
2132
102
Zarate Jr C A, Quiroz J A, Singh J B et al.
An open-label trial of the glutamate-modulating agent riluzole in combination with lithium for the treatment of bipolar depression.
Biol Psychiatry.
2005;
57
430-432
103
Mathew S J, Amiel J M, Coplan J D et al.
Open-label trial of riluzole in generalized anxiety disorder.
Am J Psychiatry.
2005;
162
2379-2381
104
Mathew S J, Murrough J W, aan het Rot M et al.
Riluzole for relapse prevention following intravenous ketamine in treatment-resistant depression: a pilot randomized, placebo-controlled continuation trial.
Int J Neuropsychopharmacol.
2010;
13
71-82
105
Ferguson J M, Shingleton R N.
An open-label, flexible-dose study of memantine in major depressive disorder.
Clin Neuropharmacol.
2007;
30
136-144
106
Zarate Jr C A, Singh J B, Quiroz J A et al.
A double-blind, placebo-controlled study of memantine in the treatment of major depression.
Am J Psychiatry.
2006;
163
153-155
107
Muhonen L H, Lönnqvist J, Juva K et al.
Double-blind, randomized comparison of memantine and escitalopram for the treatment of major depressive disorder comorbid with alcohol dependence.
J Clin Psychiatry.
2008;
69
392-399
108
Berman R M, Cappiello A, Anand A et al.
Antidepressant effects of ketamine in depressed patients.
Biol Psychiatry.
2000;
47
351-354
109
Zarate Jr C A, Singh J B, Carlson P J et al.
A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression.
Arch Gen Psychiatry.
2006;
63
856-864
110
Paslakis G, Gilles M, Meyer-Lindenberg A et al.
Oral Administration of the NMDA Receptor Antagonist S-Ketamine as Add-On Therapy of Depression: A Case Series.
Pharmacopsychiatry.
2010;
43
33-35
111
Salvadore G, Cornwell B R, Colon-Rosario V et al.
Increased anterior cingulate cortical activity in response to fearful faces: a neurophysiological biomarker that predicts rapid antidepressant response to ketamine.
Biol Psychiatry.
2009;
65
289-295
112 Kinsler R, Duman R S. Acute ketamine administration increases VEGF expression in the hippocampus: potenzial role in the rapid antidepressant effects of ketamine. Abstract of Society for Neuroscience Meeting at Washington DC 2008 ; #56.14
113
Warner-Schmidt J L, Duman R S.
VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants.
Proc Natl Acad Sci USA.
2007;
104
4647-4652
114
Machado-Vieira R, Yuan P, Brutsche N et al.
Brain-derived neurotrophic factor and initial antidepressant response to an N-methyl-D-aspartate antagonist.
J Clin Psychiatry.
2009;
; [Epub ahead of print]
115
Stahl S M.
The sigma enigma: can sigma receptors provide a novel target for disorders of mood and cognition?.
J Clin Psychiatry.
2008;
69
1673-1674
116
Borza I, Domány G.
NR2B selective NMDA antagonists: the evolution of the ifenprodil-type pharmacophore.
Curr Top Med Chem.
2006;
6
687-695
117
Inta D, Trusel M, Riva M A et al.
Differential c-Fos induction by different NMDA receptor antagonists with antidepressant efficacy: potenzial clinical implications.
Int J Neuropsychopharmacol.
2009;
12
1133-1136
118
Preskorn S H, Baker B, Kolluri S et al.
An innovative design to establish proof of concept of the antidepressant effects of the NR 2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder.
J Clin Psychopharmacol.
2008;
28
631-637
119
Mineur Y S, Picciotto M R, Sanacora G.
Antidepressant-like effects of ceftriaxone in male C 57BL/ 6J mice.
Biol Psychiatry.
2007;
61
250-252
120
Rothstein J D, Patel S, Regan M R et al.
β-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression.
Nature.
2005;
433
73-77
121
Berk M, Copolov D L, Dean O et al.
N-acetyl cysteine for depressive symptoms in bipolar disorder – a double-blind randomized placebo-controlled trial.
Biol Psychiatry.
2008;
64
468-475
Dr. Georgios Paslakis
Klinik für Psychiatrie und Psychotherapie
Zentralinstitut für Seelische Gesundheit
J5
68159 Mannheim
eMail: Georgios.Paslakis@zi-mannheim.de