Klin Monbl Augenheilkd 2010; 227(8): 611-616
DOI: 10.1055/s-0029-1245563
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Untersuchung von Zentrierung und Positionsstabilität bei modernen Intraokularlinsen nach Kataraktchirurgie

Assessment of Centration and Position Stability of Modern Intraocular Lenses after Cataract SurgeryM. Baumeister1 , T. Kohnen1
  • 1Klinik für Augenheilkunde, Goethe-Universität, Frankfurt
Further Information

Publication History

Eingegangen: 21.5.2010

Angenommen: 21.6.2010

Publication Date:
12 August 2010 (online)

Zusammenfassung

Zentrierung und Positionsstabilität von Intraokularlinsen (IOL) sind entscheidende Faktoren für optische Qualität und Vorhersagbarkeit des Ergebnisses nach IOL-Implantation. Stetige Weiterentwicklung von IOL-Design und -Materialien, Operationstechnik und Messmethoden tragen zur Optimierung der Korrektur des pseudophaken Auges und zum besseren Verständnis der Auswirkung der IOL-Position bei. Mit modernen IOL kann bei Implantation in den Kapselsack eine Positionierung und Stabilität vergleichbar der natürlichen Linse erzielt werden.

Abstract

Centration and positional stability of intraocular lenses (IOLs) are crucial factors for optical quality and predictability of the result after IOL implantation. Continuous improvements of IOL design and materials, surgical techniques and measurement methods have contributed to an optimised correction of the presudophakic eye and to a better unterstanding of the effects of IOL positioning. With modern IOLs implanted into the capsular bag, positioning and stability comparable to the natural crystalline lens can be achieved.

Literatur

  • 1 Auffarth G U, Apple D J. Entwicklungsgeschichte der Intraokularlinsen.  Ophthalmologe. 2001;  98 1017-1028
  • 2 Kohnen T. MICS – Mikroinzisionale Kataraktchirurgie.  Ophthalmologe. 2010;  107 105-107
  • 3 Atchison D A. Optical design of intraocular lenses. III. On-axis performance in the presence of lens displacement.  Optom Vis Sci. 1989;  66 671-681
  • 4 Kohnen T, Klaproth O K. Asphärische Intraokularlinsen.  Ophthalmologe. 2008;  105 234-240
  • 5 Kohnen T, Klaproth O K, Bühren J. Effect of intraocular lens asphericity on quality of vision after cataract removal: an intra-individual comparison.  Ophthalmology. 2009;  ;in press
  • 6 Korynta J, Bok J, Cendelin J et al. Computer modeling of visual impairment caused by intraocular lens misalignment.  J Cataract Refract Surg. 1999;  25 100-105
  • 7 Bühren J, Kohnen T. Anwendung der Wellenfrontanalyse in Klinik und Wissenschaft. Vom irregularen Astigmatismus zu Aberrationen höherer Ordnung – Teil I: Grundlagen.  Ophthalmologe. 2007;  104 909-923 ; quiz 924 – 905
  • 8 Bühren J, Kohnen T. Anwendung der Wellenfrontanalyse in Klinik und Wissenschaft : Vom irregularen Astigmatismus zu Aberrationen höherer Ordnung – Teil II: Beispiele.  Ophthalmologe. 2007;  104 991-1006 ; quiz 1007 – 1008
  • 9 Wang L, Dai E, Koch D D et al. Optical aberrations of the human anterior cornea.  J Cataract Refract Surg. 2003;  29 1514-1521
  • 10 Holladay J T, Piers P A, Koranyi G et al. A new intraocular lens design to reduce spherical aberration of pseudophakic eyes.  Journal of Refractive Surgery. 2002;  18 683-691
  • 11 Kasper T, Bühren J, Kohnen T. Visual performance of aspherical and spherical intraocular lenses: intraindividual comparison of visual acuity, contrast sensitivity, and higher-order aberrations.  J Cataract Refract Surg. 2006;  32 2022-2029
  • 12 Altmann G E, Nichamin L D, Lane S S et al. Optical performance of 3 intraocular lens designs in the presence of decentration.  J Cataract Refract Surg. 2005;  31 574-585
  • 13 Dietze H H, Cox M J. Limitations of correcting spherical aberration with aspheric intraocular lenses.  J Refract Surg. 2005;  21 S541-546
  • 14 Jung C K, Chung S K, Baek N H. Decentration and tilt: silicone multifocal versus acrylic soft intraocular lenses.  J Cataract Refract Surg. 2000;  26 582-585
  • 15 Wallin T R, Hinckley M, Nilson C et al. A clinical comparison of single-piece and three-piece truncated hydrophobic acrylic intraocular lenses.  Am J Ophthalmol. 2003;  136 614-619
  • 16 Wang L, Koch D D. Effect of decentration of wavefront-corrected intraocular lenses on the higher-order aberrations of the eye.  Arch Ophthalmol. 2005;  123 1226-1230
  • 17 Brown N. An advanced slit-image camera.  Br J Ophthalmol. 1972;  56 624-631
  • 18 Sasaki K, Sakamoto Y, Shibata T et al. Measurement of postoperative intraocular lens tilting and decentration using Scheimpflug images.  J Cataract Refract Surg. 1989;  15 454-457
  • 19 Hayashi K, Yoshida M, Hayashi H. Comparison of posterior capsule opacification between fellow eyes with two types of acrylic intraocular lens.  Eye. 2006;  22 35-41
  • 20 Dubbelman M, Weeber H A, Heijde R G et al. Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography.  Acta Ophthalmologica Scandinavica. 2002;  80 379
  • 21 Guyton D L, Uozato van der H, Wisnicki H J. Rapid determination of intraocular lens tilt and decentration through the undilated pupil.  Ophthalmology. 1990;  97 1259-1264
  • 22 Kozaki J, Tanihara H, Yasuda A et al. Tilt and decentration of the implanted posterior chamber intraocular lens.  J Cataract Refract Surg. 1991;  17 592-595
  • 23 Tabernero J, Piers P, Benito A et al. Predicting the Optical Performance of Eyes Implanted with IOLs to Correct Spherical Aberration.  Invest Ophthalmol Vis Sci. 2006;  47 4651-4658
  • 24 Schaeffel F. Binocular lens tilt and decentration measurements in healthy subjects with phakic eyes.  Invest Ophthalmol Vis Sci. 2008;  49 2216-2222
  • 25 Rosales P, Marcos S. Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements.  J Opt Soc Am A. 2006;  23 509-520
  • 26 Auran J D, Koester C J, Donn A. In vivo measurement of posterior chamber intraocular lens decentration and tilt.  Arch Ophthalmol. 1990;  108 75-79
  • 27 Hayashi K, Harada M, Hayashi H et al. Decentration and tilt of polymethyl methacrylate, silicone, and acrylic soft intraocular lenses.  Ophthalmology. 1997;  104 793-798
  • 28 Baumeister M, Neidhardt B, Strobel J et al. Tilt and decentration of three-piece foldable high-refractive silicone and hydrophobic acrylic intraocular lenses with 6-mm optics in an intraindividual comparison.  Am J Ophthalmol. 2005;  140 1051-1058
  • 29 Baumeister M, Kohnen T. Scheimpflug measurement of intraocular lens position after piggyback implantation of foldable intraocular lenses in eyes with high hyperopia.  J Cataract Refract Surg. 2006;  32 2098-2104
  • 30 Nejima R, Miyata K, Honbou M et al. A prospective, randomised comparison of single and three piece acrylic foldable intraocular lenses.  Br J Ophthalmol. 2004;  88 746-749
  • 31 Kim J S, Shyn K H. Biometry of 3 types of intraocular lenses using Scheimpflug photography.  J Cataract Refract Surg. 2001;  27 533-536
  • 32 Gayton J L, Sanders V N. Implanting two posterior chamber intraocular lenses in a case of microphthalmos.  J Cataract Refract Surg. 1993;  19 776-777
  • 33 Shugar J K, Lewis C, Lee A. Implantation of multiple foldable acrylic posterior chamber lenses in the capsular bag for high hyperopia.  J Cataract Refract Surg. 1996;  22 (Suppl 2) 1368-1372
  • 34 Kohnen T, Koch M J. Refractive aspects of cataract surgery.  Curr Opin Ophthalmol. 1998;  9 55-59
  • 35 Chang S H, Lim G. Secondary pigmentary glaucoma associated with piggyback intraocular lens implantation.  J Cataract Refract Surg. 2004;  30 2219-2222
  • 36 Häberle H, Wirbelauer C, Aurich H et al. Huckepacklinsenimplantation zur Korrektur einer Anisometropie bei Pseudophakie.  Ophthalmologe. 2003;  100 129-132
  • 37 Mester U, Dillinger P, Anterist N. Impact of a modified optic design on visual function: clinical comparative study.  J Cataract Refract Surg. 2003;  29 652-660
  • 38 Bühren J, Pesudovs K, Martin T et al. Comparison of optical quality metrics to predict subjective quality of vision after laser in situ keratomileusis.  J Cataract Refract Surg. 2009;  35 846-855
  • 39 Kasper T, Bühren J, Kohnen T. Intraindividual comparison of higher-order aberrations after implantation of aspherical and spherical intraocular lenses as a function of pupil diameter.  J Cataract Refract Surg. 2006;  32 78-84
  • 40 Baumeister M, Bühren J, Kohnen T. Tilt and decentration of spherical and aspheric intraocular lenses: effect on higher-order aberrations.  J Cataract Refract Surg. 2009;  35 1006-1012
  • 41 Mester U, Sauer T, Kaymak H. Decentration and tilt of a single-piece aspheric intraocular lens compared with the lens position in young phakic eyes.  J Cataract Refract Surg. 2009;  35 485-490
  • 42 Artal P, Benito A, Tabernero J. The human eye is an example of robust optical design.  J Vis. 2006;  6 1-7
  • 43 Yang H C, Chung S K, Baek N H. Decentration, tilt, and near vision of the array multifocal intraocular lens.  Journal of Cataract and Refractive Surgery. 2000;  26 586
  • 44 Dick H B, Schwenn O, Krummenauer F et al. Refraktion, Vorderkammertiefe, Dezentrierung und Tilt nach Implantation monofokaler und multifokaler Silikonlinsen.  Ophthalmologe. 2001;  98 380-386
  • 45 Durak A, Oner H F, Kocak N et al. Tilt and decentration after primary and secondary transsclerally sutured posterior chamber intraocular lens implantation.  J Cataract Refract Surg. 2001;  27 227-232
  • 46 Hayashi K, Hayashi H, Nakao F et al. Anterior capsule contraction and intraocular lens decentration and tilt after hydrogel lens implantation.  Br J Ophthalmol. 2001;  85 1294-1297
  • 47 Taketani F, Matuura T, Yukawa E et al. Influence of intraocular lens tilt and decentration on wavefront aberrations.  J Cataract Refract Surg. 2004;  30 2158-2162
  • 48 Hayashi K, Hayashi H. Comparison of the stability of 1-piece and 3-piece acrylic intraocular lenses in the lens capsule.  J Cataract Refract Surg. 2005;  31 337-342
  • 49 Mutlu F M, Bayer A, Erduman C et al. Comparison of tilt and decentration between phacoemulsification and phacotrabeculectomy.  Ophthalmologica. 2005;  219 26-29
  • 50 Mutlu F M, Erdurman C, Sobaci G et al. Comparison of tilt and decentration of 1-piece and 3-piece hydrophobic acrylic intraocular lenses.  J Cataract Refract Surg. 2005;  31 343-347
  • 51 Taketani F, Yukawa E, Ueda T et al. Effect of tilt of 2 acrylic intraocular lenses on high-order aberrations.  J Cataract Refract Surg. 2005;  31 1182-1186
  • 52 Oshika T, Sugita G, Miyata K et al. Influence of tilt and decentration of scleral-sutured intraocular lens on ocular higher-order wavefront aberration.  Br J Ophthalmol. 2007;  91 185-188
  • 53 Castro de A, Rosales P, Marcos S. Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study.  J Cataract Refract Surg. 2007;  33 418-429

Prof. Dr. Thomas Kohnen

Klinik für Augenheilkunde, Goethe-Universität

Theodor-Stern-Kai 7

60590 Frankfurt

Phone: ++ 49/69/63 01 39 45

Fax: ++ 49/69/63 01 38 93

Email: kohnen@em.uni-frankfurt.de

    >