Subscribe to RSS
DOI: 10.1055/s-0029-1245444
© Georg Thieme Verlag KG Stuttgart · New York
Eine SWOT (Stärken, Schwächen, Chancen und Gefahren)-Analyse der aktuellen digitalen Radiografiesysteme in der Thorax- und Skelettdiagnostik
A SWOT (Strengths, Weaknesses, Opportunities and Threats) Analysis of Current Digital Radiography Systems for Thorax- and Skeletal DiagnosticsPublication History
Publication Date:
05 August 2010 (online)

Zusammenfassung
Zielsetzung: Ziel war eine Evaluierung der Stärken und Schwächen und der damit verbundenen Chancen und Gefahren, auch SWOT-Analyse, der aktuellen digitalen Radiografiesysteme. Damit soll Radiologen für die Anschaffung eines Radiografiesystems eine Hilfestellung zur Entscheidungsfindung zur Seite gestellt werden. Methodik: Die aktuell auf dem Markt befindlichen Technologien für die Speicherfolienradiografie (CR) und Direktradiografie (DR) wurden einer systematischen Analyse unterzogen. Dazu wurden sie hinsichtlich der physikalischen Leistungsmerkmale, der diagnostischen Genauigkeit, dem Potenzial zur Strahlendosisreduktion und ökonomischen Parameter evaluiert und in SWOT-Tabellen gegenübergestellt. Ergebnisse: Die physikalischen Leistungsparameter und die diagnostische Genauigkeit zeigen einen klaren Vorteil für DR-Systeme mittels TFT (thin-film transistor) gegenüber Speicherfolien. Nadelkristalldetektoren sind eine wichtige Weiterentwicklung der CR-Systeme, da sie hinsichtlich der physikalischen Parameter mit DR-Systemen vergleichbar sind. Speicherfoliensysteme stellen durch niedrige Anschaffungskosten, leichte Integrierbarkeit in bestehende Filmfolien-Systeme und einfache Durchführung von Untersuchungen in der Intensiv- und Notfallradiografie eine potenzielle Alternative dar. Zudem haben technologische Entwicklungen wie dual-side reading und ScanHead zu einer höheren Konkurrenzfähigkeit von CR-Systemen gesorgt. Schlussfolgerung: Die Frage nach dem am besten geeigneten digitalen Radiografiesystem hängt entscheidend von den gestellten Anforderungen und dem Einsatzgebiet ab und lässt sich nicht einfach und klar beantworten. Anhand der beschriebenen Stärken und Schwächen der digitalen Radiografiesysteme kann der Radiologe kaufmännisch analysieren, welche Chancen und Gefahren auf die Geschäftseinheit zukommen können.
Abstract
Purpose: To evaluate the strengths, weaknesses, opportunities and threats (SWOT analysis) of the current digital radiography systems for thorax- and skeletal diagnostics. To provide assistance for radiologists, who have to decide on the acquisition of a radiography system. Materials and Methods: The computed radiography (CR) and direct radiography (DR) technologies which are commercially available were evaluated systematically regarding their physical characteristics, diagnostic accuracy, potential for dose reduction and economic parameters. These facts were presented in SWOT tables. Results: The physical parameters and diagnostic accuracy show a clear advantage for DR systems using TFT (thin film transistor) over storage-phosphor image plates (IP). These advantages enable the potential for dose reduction too. Needle-structured IP represent an important development of CR systems. They are comparable with DR-systems using TFT regarding the physical parameters. CR-systems represent a potential alternative, due to their low costs of acquisition, the possibility for easy integration into existing film-screen systems, and their simple handling in intensive care and emergency radiography. Technological developments like dual-side reading and ScanHead improved the competitiveness of CR systems. Conclusion: Which digital radiography system might be best suited for specific site depends crucially on the requirements posed and the operational area. The answer to this question is not simple. On basis of the strengths and weaknesses of the digital radiography systems, the radiologist is able to analyze the opportunities and threats for the business unit.
Schlüsselwörter
digitale Radiografie - Thoraxdiagnostik - Skelettdiagnostik - SWOT-Analyse - Marketing
Key words
digital radiography - thorax diagnostics - skeletal diagnostics - SWOT analysis - marketing
Literatur
- 1
Schaefer-Prokop C, Uffmann M, Eisenhuber E et al.
Digital radiography of the chest: detector techniques and performance parameters.
J Thorac Imaging.
2003;
18
124-137
MissingFormLabel
- 2
Seibert J A.
Digital radiography: CR versus DR? Time to reconsider the options, the definitions,
and current capabilities.
Appl Radiol Suppl.
2007;
36
4-7
MissingFormLabel
- 3
Romlein J.
CR versus DR: Blurred lines of distinction.
Appl Radiol Suppl.
2007;
36
8-10
MissingFormLabel
- 4
Neitzel U.
Status and prospects of digital detector technology for CR and DR.
Radiat Prot Dosimetry.
2005;
114
32-38
MissingFormLabel
- 5
Korner M, Weber C H, Wirth S et al.
Advances in digital radiography: physical principles and system overview.
Radiographics.
2007;
27
675-686
MissingFormLabel
- 6
Rowlands J A.
The physics of computed radiography.
Phys Med Biol.
2002;
47
R123-166
MissingFormLabel
- 7
Fasbender R, Schaetzing R.
New computed radiography technologies in digital radiography.
Radiologe.
2003;
43
367-373
MissingFormLabel
- 8
Leblans P, Struye L, Willems P.
A new needle-crystalline computed radiography detector.
J Digit Imaging.
2000;
13
117-120
MissingFormLabel
- 9
Loncke F, Vrielinck H, Matthys P et al.
Electron paramagnetic resonance study of a Eu2 + related defect in CsBr:Eu needle
image plates for computed radiography.
Spectrochim Acta A Mol Biomol Spectrosc.
2008;
69
1322-1326
MissingFormLabel
- 10
Uffmann M, Schaefer-Prokop C, Neitzel U.
[Balance of required dose and image quality in digital radiography].
Radiologe.
2008;
48
249-257
MissingFormLabel
- 11
Riccardi L, Cauzzo M C, Fabbris R et al.
Comparison between a built-in „dual side” chest imaging device and a standard „single
side” CR.
Med Phys.
2007;
34
119-126
MissingFormLabel
- 12
Fetterly K A, Schueler B A.
Performance evaluation of a „dual-side read” dedicated mammography computed radiography
system.
Med Phys.
2003;
30
1843-1854
MissingFormLabel
- 13
Monnin P, Holzer Z, Wolf R et al.
An image quality comparison of standard and dual-side read CR systems for pediatric
radiology.
Med Phys.
2006;
33
411-420
MissingFormLabel
- 14
Cowen A R, Davies A G, Kengyelics S M.
Advances in computed radiography systems and their physical imaging characteristics.
Clin Radiol.
2007;
62
1132-1141
MissingFormLabel
- 15
Volk M, Hamer O W, Feuerbach S et al.
Dose reduction in skeletal and chest radiography using a large-area flat-panel detector
based on amorphous silicon and thallium-doped cesium iodide: technical background,
basic image quality parameters, and review of the literature.
Eur Radiol.
2004;
14
827-834
MissingFormLabel
- 16
Kotter E, Langer M.
Digital radiography with large-area flat-panel detectors.
Eur Radiol.
2002;
12
2562-2570
MissingFormLabel
- 17
Spahn M, Heer V, Freytag R.
Flat-panel detectors in X-ray systems.
Radiologe.
2003;
43
340-350
MissingFormLabel
- 18
Schaefer-Prokop C, Uffmann M, Sailer J et al.
Digital thorax radiography: flat-panel detector or storage phosphor plates.
Radiologe.
2003;
43
351-361
MissingFormLabel
- 19
Cowen A R, Kengyelics S M, Davies A G.
Solid-state, flat-panel, digital radiography detectors and their physical imaging
characteristics.
Clin Radiol.
2008;
63
487-498
MissingFormLabel
- 20
Chotas H G, Dobbins 3rd
J T, Ravin C E.
Principles of digital radiography with large-area, electronically readable detectors:
a review of the basics.
Radiology.
1999;
210
595-599
MissingFormLabel
- 21 Homburg C. Quantitative Betriebswirtschaftslehre: Entscheidungsunterstützung durch Modelle. Wiesbaden: Gabler; 2000: 134-135
MissingFormLabel
- 22 Aumayr K J. Erfolgreiches Produktmanagement: Tool-Box für das professionelle Produktmanagement
und Produktmarketing. Wiesbaden: Gabler; 2006: 244-248
MissingFormLabel
- 23
Ortiz A O, Luyckx M P.
Preparing a business justification for going electronic.
Radiol Manage.
2002;
24
14-21
MissingFormLabel
- 24
Chan S.
The importance of strategy for the evolving field of radiology.
Radiology.
2002;
224
639-648
MissingFormLabel
- 25
Korner M, Wirth S, Treitl M et al.
Initial clinical results with a new needle screen storage phosphor system in chest
radiograms.
Fortschr Röntgenstr.
2005;
177
1491-1496
MissingFormLabel
- 26
Heyne J P, Mentzel H J, Neumann R et al.
Phantom Examination for Reduction of Radiation Dose Using New Needle Screen Storage
Phosphor Radiography and Add Beam Filter in Digital Thoracic Radiography on Adolescents
and Larger Children.
Fortschr Röntgenstr.
2008;
180
231-237
MissingFormLabel
- 27
Rong X J, Shaw C C, Liu X et al.
Comparison of an amorphous silicon/cesium iodide flat-panel digital chest radiography
system with screen/film and computed radiography systems – a contrast-detail phantom
study.
Med Phys.
2001;
28
2328-2335
MissingFormLabel
- 28
Redlich U, Reissberg S, Hoeschen C et al.
Chest radiography: ROC phantom study of four different digital systems and one conventional
radiographic system.
Fortschr Röntgenstr.
2003;
175
38-45
MissingFormLabel
- 29
Peer S, Neitzel U, Giacomuzzi S M et al.
Comparison of low-contrast detail perception on storage phosphor radiographs and digital
flat panel detector images.
IEEE Trans Med Imaging.
2001;
20
239-242
MissingFormLabel
- 30
Herrmann A, Bonel H, Stabler A et al.
Chest imaging with flat-panel detector at low and standard doses: comparison with
storage phosphor technology in normal patients.
Eur Radiol.
2002;
12
385-390
MissingFormLabel
- 31
McAdams H P, Samei E, Dobbins 3 rd J et al.
Recent advances in chest radiography.
Radiology.
2006;
241
663-683
MissingFormLabel
- 32
Reiner B I, Salkever D, Siegel E L et al.
Multi-institutional analysis of computed and direct radiography: part II. Economic
analysis.
Radiology.
2005;
236
420-426
MissingFormLabel
- 33
Andriole K P.
Productivity and cost assessment of computed radiography, digital radiography, and
screen-film for outpatient chest examinations.
J Digit Imaging.
2002;
15
161-169
MissingFormLabel
- 34
Kirchner J, Stueckle C A, Schilling E M et al.
Efficacy of daily bedside chest radiography as visualized by digital luminescence
radiography.
Australas Radiol.
2001;
45
444-447
MissingFormLabel
- 35
Seibert J A.
Digital radiography: image quality and radiation dose.
Health Phys.
2008;
95
586-598
MissingFormLabel
- 36
Mackenzie A, Honey I D.
Characterization of noise sources for two generations of computed radiography systems
using powder and crystalline photostimulable phosphors.
Med Phys.
2007;
34
3345-3357
MissingFormLabel
- 37
Monnin P, Holzer Z, Wolf R et al.
Influence of cassette type on the DQE of CR systems.
Med Phys.
2006;
33
3637-3639
MissingFormLabel
- 38
Fischbach F, Ricke J, Freund T et al.
Flat panel digital radiography compared with storage phosphor computed radiography:
assessment of dose versus image quality in phantom studies.
Invest Radiol.
2002;
37
609-614
MissingFormLabel
- 39
Uffmann M, Prokop M, Eisenhuber E et al.
Computed radiography and direct radiography: influence of acquisition dose on the
detection of simulated lung lesions.
Invest Radiol.
2005;
40
249-256
MissingFormLabel
- 40
Andriole K P, Luth D M, Gould R G.
Workflow assessment of digital versus computed radiography and screen-film in the
outpatient environment.
J Digit Imaging.
2002;
15 Suppl 1
124-126
MissingFormLabel
- 41
Reiner B I, Siegel E L, Hooper F J et al.
Multi-institutional analysis of computed and direct radiography: part I. Technologist
productivity.
Radiology.
2005;
236
413-419
MissingFormLabel
- 42
Veldkamp W J, Kroft L J, Boot M V et al.
Contrast-detail evaluation and dose assessment of eight digital chest radiography
systems in clinical practice.
Eur Radiol.
2006;
16
333-341
MissingFormLabel
- 43
Kroft L J, Veldkamp W J, Mertens B J et al.
Comparison of eight different digital chest radiography systems: variation in detection
of simulated chest disease.
Am J Roentgenol.
2005;
185
339-346
MissingFormLabel
- 44
Grampp S, Czerny C, Krestan C et al.
Flat-screen detector systems in skeletal radiology.
Radiologe.
2003;
43
362-366
MissingFormLabel
- 45
Illers H, Buhr E, Gunther-Kohfahl S et al.
Measurement of the modulation transfer function of digital X-ray detectors with an
opaque edge-test device.
Radiat Prot Dosimetry.
2005;
114
214-219
MissingFormLabel
- 46
Fischbach F, Freund T, Rottgen R et al.
Dual-energy chest radiography with a flat-panel digital detector: revealing calcified
chest abnormalities.
Am J Roentgenol.
2003;
181
1519-1524
MissingFormLabel
- 47
Illers H, Buhr E, Hoeschen C.
Measurement of the detective quantum efficiency (DQE) of digital X-ray detectors according
to the novel standard IEC 62 220 – 1.
Radiat Prot Dosimetry.
2005;
114
39-44
MissingFormLabel
- 48
Chotas H G, Ravin C E.
Digital chest radiography with a solid-state flat-panel x-ray detector: contrast-detail
evaluation with processed images printed on film hard copy.
Radiology.
2001;
218
679-682
MissingFormLabel
- 49
Fink C, Hallscheidt P J, Noeldge G et al.
Clinical comparative study with a large-area amorphous silicon flat-panel detector:
image quality and visibility of anatomic structures on chest radiography.
Am J Roentgenol.
2002;
178
481-486
MissingFormLabel
- 50
Floyd C E, Warp R J, Dobbins 3 rd J T et al.
Imaging characteristics of an amorphous silicon flat-panel detector for digital chest
radiography.
Radiology.
2001;
218
683-688
MissingFormLabel
- 51
Geijer Jr H, Beckman K W, Andersson T et al.
Image quality vs. radiation dose for a flat-panel amorphous silicon detector: a phantom
study.
Eur Radiol.
2001;
11
1704-1709
MissingFormLabel
- 52
Bath M, Sund P, Mansson L G.
Evaluation of the imaging properties of two generations of a CCD-based system for
digital chest radiography.
Med Phys.
2002;
29
2286-2297
MissingFormLabel
Dr. A. Stadlbauer
Landesklinikum St. Pölten, Zentrales Institut für Radiologie, Diagnostik und Interventionelle
Therapie
Propst-Führer-Straße 4
3100 St. Pölten
Österreich
Email: andi@nmr.at