Subscribe to RSS
DOI: 10.1055/s-0029-1245250
© Georg Thieme Verlag KG Stuttgart · New York
Serotonin Kompakt – Teil 2[*]
Verhaltensgenetik und PsychopathologieSerotonin Now: Part 2Behavioral Genetics and PsychopathologyPublication History
Publication Date:
09 March 2010 (online)

Zusammenfassung
Ein dysfunktionales Serotonin-(5-HT-)System ist sowohl an einer veränderten emotionalen Reaktion als auch einer veränderten Stress-Antwort und damit an der Ätiologie und Pathogenese verschiedener neuropsychiatrischer Erkrankungen beteiligt. Dies wird sowohl durch verhaltenspharmakologische Experimente als auch genetische Studien belegt, wobei jedoch die Einflüsse unterschiedlicher Varianten in Genen, die dem serotonergen System zuzurechnen sind, kontrovers diskutiert werden. Die Untersuchung von Knockout-Mäusen, bei denen ganz gezielt gewebs- und entwicklungsspezifisch Gene des serotonergen Systems ausgeschaltet werden, unterstreicht die wichtige Bedeutung von 5-HT während der Entwicklung und insbesondere hinsichtlich der Entstehung emotionaler Verhaltensweisen. In diesem zweiten Teil des Übersichtsartikels werden neben den tierexperimentellen Studien genetische und pharmakologische Untersuchungen, gepaart mit klinischen Studien, zusammengefasst und kritisch diskutiert. Die Datenlage belegt die komplexen Funktionen von 5-HT, das im Zentrum zahlreicher neurobiologischer Vorgänge steht und weitreichende Implikationen für menschliches Verhalten aufweist. Epigenetische Regulationsmechanismen werden in den kommenden Jahren zunehmend erforscht werden und tragen zur Komplexität des serotonergen Systems bei. Nach wie vor steht daher das 5-HT-System im Mittelpunkt aktueller Hypothesen zur Pathogenese von Erkrankungen mit dem Kernsymptom emotionaler Dysregulation.
Abstract
Several lines of evidence implicate a dysregulation of the serotonin (5-HT) system in emotional behavior and stress, and point to its relevance for the etiology and pathogenesis of various neuropsychiatric disorders. This is evidenced by behavioral pharmacology as well as genetic studies, yet the impact of genetic variation within the 5-HT system on human disorders remains controversial. The generation of tissue-specific and inducible knockout mice lacking genes belonging to the 5-HT system further established the importance of the 5-HT system for neuronal development and the regulation of emotions. This part of the review provides a summary and critical discussion of genetic, neurobiological and pharmacological studies along with recent clinical research. Together, these data underscore the complex effects of 5-HT on human behavior and psychiatric disorders. Epigenetic mechanisms add to the complexity of the 5-HT system and will be increasingly studied in the coming years. Thus, the serotonergic system still remains in the centre of current hypotheses regarding the pathogenesis of disorders with the shared feature of emotional dysregulation.
Schlüsselwörter
Verhalten - Genetik - psychiatrische Erkrankungen - Depression - Tiermodelle
Keywords
behavior - genetic - psychiatric disorders - depression - animal models
1 Die dieser Arbeit zugrundeliegenden Untersuchungen wurden durch die DFG (GK-1156, an CK und KPL, RE1632/1-5 an AR, KFO 125 an AR und KPL; SFB 581 an AS und KPL, SFB TRR 58 an AR und KPL), das BMBF (IZKF Würzburg, 01KS9603, an KPL; IZKF N-27-N, an AR) und die EU (NEWMOOD LSHM-CT-2003-503474, an KPL) gefördert.
Literatur
- 1
Heisler L K, Chu H M, Brennan T J. et al .
Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant
mice.
Proc Natl Acad Sci USA.
1998;
95
15049-15054
MissingFormLabel
- 2
Parks C L, Robinson P S, Sibille E. et al .
Increased anxiety of mice lacking the serotonin1A receptor.
Proc Natl Acad Sci USA.
1998;
95
10734-10739
MissingFormLabel
- 3
Ramboz S, Oosting R, Amara D A. et al .
Serotonin receptor 1A knockout: an animal model of anxiety-related disorder.
Proc Natl Acad Sci USA.
1998;
95
14476-14481
MissingFormLabel
- 4
Brunner D, Buhot M C, Hen R. et al .
Anxiety, motor activation, and maternal-infant interactions in 5 HT1B knockout mice.
Behav Neurosci.
1999;
113
587-601
MissingFormLabel
- 5
Malleret G, Hen R, Guillou J L. et al .
5-HT1B receptor knock-out mice exhibit increased exploratory activity and enhanced
spatial memory performance in the Morris water maze.
J Neurosci.
1999;
19
6157-6168
MissingFormLabel
- 6
Ramboz S, Saudou F, Amara D A. et al .
5-HT1B receptor knock out – behavioral consequences.
Behav Brain Res.
1996;
73
305-312
MissingFormLabel
- 7
Saudou F, Amara D A, Dierich A. et al .
Enhanced aggressive behavior in mice lacking 5-HT1B receptor.
Science.
1994;
265
1875-1878
MissingFormLabel
- 8
Gaspar P, Cases O, Maroteaux L.
The developmental role of serotonin: news from mouse molecular genetics.
Nat Rev Neurosci.
2003;
4
1002-1012
MissingFormLabel
- 9
Ding Y Q, Marklund U, Yuan W. et al .
Lmx1b is essential for the development of serotonergic neurons.
Nat Neurosci.
2003;
6
933-938
MissingFormLabel
- 10
Ding Y Q, Yin J, Kania A. et al .
Lmx1b controls the differentiation and migration of the superficial dorsal horn neurons
of the spinal cord.
Development.
2004;
131
3693-3703
MissingFormLabel
- 11
Zhao Z Q, Scott M, Chiechio S. et al .
Lmx1b is required for maintenance of central serotonergic neurons and mice lacking
central serotonergic system exhibit normal locomotor activity.
J Neurosci.
2006;
26
12781-12788
MissingFormLabel
- 12
Gutknecht L, Waider J, Kraft S. et al .
Deficiency of brain 5-HT synthesis but serotonergic neuron formation in Tph2 knockout
mice.
J Neural Transm.
2008;
115
1127-1132
MissingFormLabel
- 13
Cannon W A.
Absorption of Oxygen by Roots When the Shoot Is in Darkness or in Light.
Plant Physiol.
1932;
7
673-684
MissingFormLabel
- 14
Cannon W B.
Important Request.
Cal State J Med.
1914;
12
302
MissingFormLabel
- 15
Strohle A.
The neuroendocrinology of stress and the pathophysiology and therapy of depression
and anxiety.
Nervenarzt.
2003;
74
279-291; quiz 292
MissingFormLabel
- 16
Dagnino-Subiabre A, Orellana J A, Carmona-Fontaine C. et al .
Chronic stress decreases the expression of sympathetic markers in the pineal gland
and increases plasma melatonin concentration in rats.
J Neurochem.
2006;
97
1279-1287
MissingFormLabel
- 17
Nieuwenhuizen A G, Rutters F.
The hypothalamic-pituitary-adrenal-axis in the regulation of energy balance.
Physiol Behav.
2008;
94
169-177
MissingFormLabel
- 18
Diaz-Marsa M, Carrasco J L, Basurte E. et al .
Enhanced cortisol suppression in eating disorders with impulsive personality features.
Psychiatry Res.
2008;
158
93-97
MissingFormLabel
- 19
Junghanns K, Horbach R, Ehrenthal D. et al .
Cortisol awakening response in abstinent alcohol-dependent patients as a marker of
HPA-axis dysfunction.
Psychoneuroendocrinology.
2007;
32
1133-1137
MissingFormLabel
- 20
Wolfert A, Mehler P S.
Osteoporosis: prevention and treatment in anorexia nervosa.
Eat Weight Disord.
2002;
7
72-81
MissingFormLabel
- 21
Deuschle M, Schweiger U, Weber B. et al .
Diurnal activity and pulsatility of the hypothalamus-pituitary-adrenal system in male
depressed patients and healthy controls.
J Clin Endocrinol Metab.
1997;
82
234-238
MissingFormLabel
- 22
Heuser I, Bissette G, Dettling M. et al .
Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin,
and somatostatin in depressed patients and healthy controls: response to amitriptyline
treatment.
Depress Anxiety.
1998;
8
71-79
MissingFormLabel
- 23
Nemeroff C B, Bissette G, Akil H. et al .
Neuropeptide concentrations in the cerebrospinal fluid of depressed patients treated
with electroconvulsive therapy. Corticotrophin-releasing factor, beta-endorphin and
somatostatin.
Br J Psychiatry.
1991;
158
59-63
MissingFormLabel
- 24
Lesch K P, Lerer B.
The 5-HT receptor – G-protein – effector system complex in depression. I. Effect of
glucocorticoids.
J Neural Transm Gen Sect.
1991;
84
3-18
MissingFormLabel
- 25
Lesch K P, Mayer S, Disselkamp-Tietze J. et al .
5-HT1A receptor responsivity in unipolar depression. Evaluation of ipsapirone-induced
ACTH and cortisol secretion in patients and controls.
Biol Psychiatry.
1990;
28
620-628
MissingFormLabel
- 26
Lesch K P.
5-HT1A receptor responsivity in anxiety disorders and depression.
Prog Neuropsychopharmacol Biol Psychiatry.
1991;
15
723-733
MissingFormLabel
- 27
Lesch K P, Merschdorf U.
Impulsivity, aggression, and serotonin: a molecular psychobiological perspective.
Behav Sci Law.
2000;
18
581-604
MissingFormLabel
- 28
Staner L, Mendlewicz J.
[Heredity and role of serotonin in aggressive impulsive behavior].
Encephale.
1998;
24
355-364
MissingFormLabel
- 29
Bunney W E Jr, Davis J M.
Norepinephrine in depressive reactions. A review.
Arch Gen Psychiatry.
1965;
13
483-494
MissingFormLabel
- 30
Schildkraut J J.
The catecholamine hypothesis of affective disorders: a review of supporting evidence.
Am J Psychiatry.
1965;
122
509-522
MissingFormLabel
- 31
Coppen A.
The biochemistry of affective disorders.
Br J Psychiatry.
1967;
113
1237-1264
MissingFormLabel
- 32
Scherman D, Henry J P.
Reserpine binding to bovine chromaffin granule membranes. Characterization and comparison
with dihydrotetrabenazine binding.
Mol Pharmacol.
1984;
25
113-122
MissingFormLabel
- 33
Maas J W.
Biogenic amines and depression. Biochemical and pharmacological separation of two
types of depression.
Arch Gen Psychiatry.
1975;
32
1357-1361
MissingFormLabel
- 34
Parker G.
Through a glass darkly: the disutility of the DSM nosology of depressive disorders.
Can J Psychiatry.
2006;
51
879-886
MissingFormLabel
- 35
Delgado P L, Charney D S, Price L H. et al .
Serotonin function and the mechanism of antidepressant action. Reversal of antidepressant-induced
remission by rapid depletion of plasma tryptophan.
Arch Gen Psychiatry.
1990;
47
411-418
MissingFormLabel
- 36
Meltzer H Y.
Role of serotonin in depression.
Ann N Y Acad Sci.
1990;
600
486-499; discussion 499 – 500
MissingFormLabel
- 37
Arranz B, Blennow K, Eriksson A. et al .
Serotonergic, noradrenergic, and dopaminergic measures in suicide brains.
Biol Psychiatry.
1997;
41
1000-1009
MissingFormLabel
- 38
Stanley M, Mann J J, Cohen L S.
Role of the serotonergic system in the postmortem analysis of suicide.
Psychopharmacol Bull.
1986;
22
735-740
MissingFormLabel
- 39
Mendels J, Frazer A.
Reduced central serotonergic activity in mania: implications for the relationship
between depression and mania.
Br J Psychiatry.
1975;
126
241-248
MissingFormLabel
- 40
Sambeth A, Riedel W J, Tillie D E. et al .
Memory impairments in humans after acute tryptophan depletion using a novel gelatin-based
protein drink.
J Psychopharmacol.
2009;
23
56-64
MissingFormLabel
- 41
Van der Does A J.
The effects of tryptophan depletion on mood and psychiatric symptoms.
J Affect Disord.
2001;
64
107-119
MissingFormLabel
- 42
Young S N, Smith S E, Pihl R O. et al .
Tryptophan depletion causes a rapid lowering of mood in normal males.
Psychopharmacology (Berl).
1985;
87
173-177
MissingFormLabel
- 43
Bach-Mizrachi H, Underwood M D, Kassir S A. et al .
Neuronal tryptophan hydroxylase mRNA expression in the human dorsal and median raphe
nuclei: major depression and suicide.
Neuropsychopharmacology.
2006;
31
814-824
MissingFormLabel
- 44
De Luca V, Likhodi O, Van Tol H H. et al .
Gene expression of tryptophan hydroxylase 2 in post-mortem brain of suicide subjects.
Int J Neuropsychopharmacol.
2006;
9
21-25
MissingFormLabel
- 45
Lesch K P, Schmitt A.
Antidepressants and gene expression profiling: how to SNARE novel drug targets.
Pharmacogenomics J.
2002;
2
346-348
MissingFormLabel
- 46
Li Q, Wichems C, Heils A. et al .
Reduction of 5-hydroxytryptamine (5-HT)(1A)-mediated temperature and neuroendocrine
responses and 5-HT(1A) binding sites in 5-HT transporter knockout mice.
J Pharmacol Exp Ther.
1999;
291
999-1007
MissingFormLabel
- 47
Lesch K P, Aulakh C S, Wolozin B L. et al .
Regional brain expression of serotonin transporter mRNA and its regulation by reuptake
inhibiting antidepressants.
Brain Res Mol Brain Res.
1993;
17
31-35
MissingFormLabel
- 48
Benmansour S, Owens W A, Cecchi M. et al .
Serotonin clearance in vivo is altered to a greater extent by antidepressant-induced
downregulation of the serotonin transporter than by acute blockade of this transporter.
J Neurosci.
2002;
22
6766-6772
MissingFormLabel
- 49
Calcagno E, Canetta A, Guzzetti S. et al .
Strain differences in basal and post-citalopram extracellular 5-HT in the mouse medial
prefrontal cortex and dorsal hippocampus: relation with tryptophan hydroxylase-2 activity.
J Neurochem.
2007;
103
1111-1120
MissingFormLabel
- 50
Cervo L, Canetta A, Calcagno E. et al .
Genotype-dependent activity of tryptophan hydroxylase-2 determines the response to
citalopram in a mouse model of depression.
J Neurosci.
2005;
25
8165-8172
MissingFormLabel
- 51
Invernizzi R W.
Role of TPH-2 in brain function: news from behavioral and pharmacologic studies.
J Neurosci Res.
2007;
85
3030-3035
MissingFormLabel
- 52
Mongeau R, Blier P, Montigny de C.
The serotonergic and noradrenergic systems of the hippocampus: their interactions
and the effects of antidepressant treatments.
Brain Res Brain Res Rev.
1997;
23
145-195
MissingFormLabel
- 53
Wagner G J, Rabkin J G, Rabkin R.
Dextroamphetamine as a treatment for depression and low energy in AIDS patients: a
pilot study.
J Psychosom Res.
1997;
42
407-411
MissingFormLabel
- 54
Wagner G J, Rabkin R.
Effects of dextroamphetamine on depression and fatigue in men with HIV: a double-blind,
placebo-controlled trial.
J Clin Psychiatry.
2000;
61
436-440
MissingFormLabel
- 55
Freitag C M, Domschke K, Rothe C. et al .
Interaction of serotonergic and noradrenergic gene variants in panic disorder.
Psychiatr Genet.
2006;
16
59-65
MissingFormLabel
- 56
Szabo S T, Blier P.
Serotonin (1A) receptor ligands act on norepinephrine neuron firing through excitatory
amino acid and GABA(A) receptors: a microiontophoretic study in the rat locus coeruleus.
Synapse.
2001;
42
203-212
MissingFormLabel
- 57
Bradley C C, Blakely R D.
Alternative splicing of the human serotonin transporter gene.
J Neurochem.
1997;
69
1356-1367
MissingFormLabel
- 58
Lesch K P, Balling U, Gross J. et al .
Organization of the human serotonin transporter gene.
J Neural Transm Gen Sect.
1994;
95
157-162
MissingFormLabel
- 59
Battersby S, Ogilvie A D, Blackwood D H. et al .
Presence of multiple functional polyadenylation signals and a single nucleotide polymorphism
in the 3’ untranslated region of the human serotonin transporter gene.
J Neurochem.
1999;
72
1384-1388
MissingFormLabel
- 60
Lesch K P, Bengel D, Heils A. et al .
Association of anxiety-related traits with a polymorphism in the serotonin transporter
gene regulatory region.
Science.
1996;
274
1527-1531
MissingFormLabel
- 61
Lesch K P, Heils A.
Serotonergic gene transcriptional control regions: targets for antidepressant drug
development?.
Int J Neuropsychopharmacol.
2000;
3
67-79
MissingFormLabel
- 62
Reif A, Rosler M, Freitag C M. et al .
Nature and nurture predispose to violent behavior: serotonergic genes and adverse
childhood environment.
Neuropsychopharmacology.
2007;
32
2375-2383
MissingFormLabel
- 63
Canli T, Lesch K P.
Long story short: the serotonin transporter in emotion regulation and social cognition.
Nat Neurosci.
2007;
10
1103-1109
MissingFormLabel
- 64
Caspi A, McClay J, Moffitt T E. et al .
Role of genotype in the cycle of violence in maltreated children.
Science.
2002;
297
851-854
MissingFormLabel
- 65
Munafo M R, Brown S M, Hariri A R.
Serotonin transporter (5-HTTLPR) genotype and amygdala activation: a meta-analysis.
Biol Psychiatry.
2008;
63
852-857
MissingFormLabel
- 66
Risch N, Herrell R, Lehner T. et al .
Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events,
and risk of depression: a meta-analysis.
JAMA.
2009;
301
2462-2471
MissingFormLabel
- 67
Uher R, McGuffin P.
The moderation by the serotonin transporter gene of environmental adversity in the
aetiology of mental illness: review and methodological analysis.
Mol Psychiatry.
2008;
13
131-146
MissingFormLabel
- 68
Hettema J M, Neale M C, Kendler K S.
A review and meta-analysis of the genetic epidemiology of anxiety disorders.
Am J Psychiatry.
2001;
158
1568-1578
MissingFormLabel
- 69
Bremner J D, Krystal J H, Southwick S M. et al .
Noradrenergic mechanisms in stress and anxiety: II. Clinical studies.
Synapse.
1996;
23
39-51
MissingFormLabel
- 70
Deckert J, Catalano M, Syagailo Y V. et al .
Excess of high activity monoamine oxidase A gene promoter alleles in female patients
with panic disorder.
Hum Mol Genet.
1999;
8
621-624
MissingFormLabel
- 71
Domschke K, Deckert J, O’Donovan M C. et al .
Meta-analysis of COMT val158met in panic disorder: ethnic heterogeneity and gender
specificity.
Am J Med Genet B Neuropsychiatr Genet.
2007;
144B
667-673
MissingFormLabel
- 72
Lesch K P, Wiesmann M, Hoh A. et al .
5-HT1A receptor-effector system responsivity in panic disorder.
Psychopharmacology (Berl).
1992;
106
111-117
MissingFormLabel
- 73
Neumeister A, Bain E, Nugent A C. et al .
Reduced serotonin type 1A receptor binding in panic disorder.
J Neurosci.
2004;
24
589-591
MissingFormLabel
- 74
Stahl S M.
Antidepressants: the blue-chip psychotropic for the modern treatment of anxiety disorders.
J Clin Psychiatry.
1999;
60
356-357
MissingFormLabel
- 75
Lesch K P, Mossner R.
Knockout Corner: 5-HT(1A) receptor inactivation: anxiety or depression as a murine
experience.
Int J Neuropsychopharmacol.
1999;
2
327-331
MissingFormLabel
- 76
He M, Sibille E, Benjamin D. et al .
Differential effects of 5-HT1A receptor deletion upon basal and fluoxetine-evoked
5-HT concentrations as revealed by in vivo microdialysis.
Brain Res.
2001;
902
11-17
MissingFormLabel
- 77
Richer M, Hen R, Blier P.
Modification of serotonin neuron properties in mice lacking 5-HT1A receptors.
Eur J Pharmacol.
2002;
435
195-203
MissingFormLabel
- 78
Gross C, Zhuang X, Stark K. et al .
Serotonin1A receptor acts during development to establish normal anxiety-like behaviour
in the adult.
Nature.
2002;
416
396-400
MissingFormLabel
- 79
Zohar J, Chopra M, Sasson Y. et al .
Obsessive compulsive disorder: serotonin and beyond.
World J Biol Psychiatry.
2000;
1
92-100
MissingFormLabel
- 80
Delorme R, Betancur C, Callebert J. et al .
Platelet serotonergic markers as endophenotypes for obsessive-compulsive disorder.
Neuropsychopharmacology.
2005;
30
1539-1547
MissingFormLabel
- 81
Hasselbalch S G, Hansen E S, Jakobsen T B. et al .
Reduced midbrain-pons serotonin transporter binding in patients with obsessive-compulsive
disorder.
Acta Psychiatr Scand.
2007;
115
388-394
MissingFormLabel
- 82
Mossner R, Walitza S, Geller F. et al .
Transmission disequilibrium of polymorphic variants in the tryptophan hydroxylase-2
gene in children and adolescents with obsessive-compulsive disorder.
Int J Neuropsychopharmacol.
2006;
9
437-442
MissingFormLabel
- 83
Evenden J L.
Varieties of impulsivity.
Psychopharmacology (Berl).
1999;
146
348-361
MissingFormLabel
- 84
Vitiello B, Stoff D M.
Subtypes of aggression and their relevance to child psychiatry.
J Am Acad Child Adolesc Psychiatry.
1997;
36
307-315
MissingFormLabel
- 85
Baumgarten H G, Grozdanovic Z.
Psychopharmacology of central serotonergic systems.
Pharmacopsychiatry.
1995;
28 Suppl 2
73-79
MissingFormLabel
- 86
Baumgarten H G, Grozdanovic Z.
[The role of serotonin in behavior modulation].
Fortschr Neurol Psychiatr.
1995;
63 Suppl 1
3-8
MissingFormLabel
- 87
Kulikov A V, Osipova D V, Naumenko V S. et al .
Association between Tph2 gene polymorphism, brain tryptophan hydroxylase activity
and aggressiveness in mouse strains.
Genes Brain Behav.
2005;
4
482-485
MissingFormLabel
- 88
Popova N K, Voitenko N N, Kulikov A V. et al .
Evidence for the involvement of central serotonin in mechanism of domestication of
silver foxes.
Pharmacol Biochem Behav.
1991;
40
751-756
MissingFormLabel
- 89
Evrard A, Malagie I, Laporte A M. et al .
Altered regulation of the 5-HT system in the brain of MAO-A knock-out mice.
Eur J Neurosci.
2002;
15
841-851
MissingFormLabel
- 90
Brunner H G, Nelen M, Breakefield X O. et al .
Abnormal behavior associated with a point mutation in the structural gene for monoamine
oxidase A.
Science.
1993;
262
578-580
MissingFormLabel
- 91
Nilsson K W, Sjoberg R L, Wargelius H L. et al .
The monoamine oxidase A (MAO-A) gene, family function and maltreatment as predictors
of destructive behaviour during male adolescent alcohol consumption.
Addiction.
2007;
102
389-398
MissingFormLabel
- 92
Lappalainen J, Long J C, Eggert M. et al .
Linkage of antisocial alcoholism to the serotonin 5-HT1B receptor gene in 2 populations.
Arch Gen Psychiatry.
1998;
55
989-994
MissingFormLabel
- 93
Miczek K A, Fish E W, De Bold J F. et al .
Social and neural determinants of aggressive behavior: pharmacotherapeutic targets
at serotonin, dopamine and gamma-aminobutyric acid systems.
Psychopharmacology (Berl).
2002;
163
434-458
MissingFormLabel
- 94
Spivak B, Vered Y, Yoran-Hegesh R. et al .
Circulatory levels of catecholamines, serotonin and lipids in attention deficit hyperactivity
disorder.
Acta Psychiatr Scand.
1999;
99
300-304
MissingFormLabel
- 95
Walitza S, Renner T J, Dempfle A. et al .
Transmission disequilibrium of polymorphic variants in the tryptophan hydroxylase-2
gene in attention-deficit/hyperactivity disorder.
Mol Psychiatry.
2005;
10
1126-1132
MissingFormLabel
- 96
Winstanley C A, Theobald D E, Dalley J W. et al .
5-HT2A and 5-HT2C receptor antagonists have opposing effects on a measure of impulsivity:
interactions with global 5-HT depletion.
Psychopharmacology (Berl).
2004;
176
376-385
MissingFormLabel
- 97
Cleare A J, Bond A J.
Ipsapirone challenge in aggressive men shows an inverse correlation between 5-HT1A
receptor function and aggression.
Psychopharmacology (Berl).
2000;
148
344-349
MissingFormLabel
- 98
Popova N K.
From genes to aggressive behavior: the role of serotonergic system.
Bioessays.
2006;
28
495-503
MissingFormLabel
- 99
Crean J, Richards J B, Wit de H.
Effect of tryptophan depletion on impulsive behavior in men with or without a family
history of alcoholism.
Behav Brain Res.
2002;
136
349-357
MissingFormLabel
- 100
Walderhaug E, Landro N I, Magnusson A.
A synergic effect between lowered serotonin and novel situations on impulsivity measured
by CPT.
J Clin Exp Neuropsychol.
2008;
30
204-211
MissingFormLabel
- 101
Moeller F G, Dougherty D M, Swann A C. et al .
Tryptophan depletion and aggressive responding in healthy males.
Psychopharmacology (Berl).
1996;
126
97-103
MissingFormLabel
- 102
Constantino J N, Morris J A, Murphy D L.
CSF 5-HIAA and family history of antisocial personality disorder in newborns.
Am J Psychiatry.
1997;
154
1771-1773
MissingFormLabel
- 103
Goodman D W.
The consequences of attention-deficit/hyperactivity disorder in adults.
J Psychiatr Pract.
2007;
13
318-327
MissingFormLabel
- 104
Lesch K P.
Alcohol dependence and gene × environment interaction in emotion regulation: Is serotonin
the link?.
Eur J Pharmacol.
2005;
526
113-124
MissingFormLabel
- 105
Piazza P V, Rouge-Pont F, Deminiere J M. et al .
Dopaminergic activity is reduced in the prefrontal cortex and increased in the nucleus
accumbens of rats predisposed to develop amphetamine self-administration.
Brain Res.
1991;
567
169-174
MissingFormLabel
- 106
Murphy D L, Uhl G R, Holmes A. et al .
Experimental gene interaction studies with SERT mutant mice as models for human polygenic
and epistatic traits and disorders.
Genes Brain Behav.
2003;
2
350-364
MissingFormLabel
- 107
Sora I, Hall F S, Andrews A M. et al .
Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter
knockouts eliminate cocaine place preference.
Proc Natl Acad Sci USA.
2001;
98
5300-5305
MissingFormLabel
- 108
Miller G M, Yatin S M, De La Garza R. et al .
Cloning of dopamine, norepinephrine and serotonin transporters from monkey brain:
relevance to cocaine sensitivity.
Brain Res Mol Brain Res.
2001;
87
124-143
MissingFormLabel
- 109
Nichols D E.
Hallucinogens.
Pharmacol Ther.
2004;
101
131-181
MissingFormLabel
- 110
Belleville R E, Fraser H F, Isbell H. et al .
Studies on lysergic acid diethylamide (LSD-25). I. Effects in former morphine addicts
and development of tolerance during chronic intoxication.
AMA Arch Neurol Psychiatry.
1956;
76
468-478
MissingFormLabel
- 111
Cholden L S, Kurland A, Savage C.
Clinical reactions and tolerance to LSD in chronic schizophrenia.
J Nerv Ment Dis.
1955;
122
211-221
MissingFormLabel
- 112
Buckholtz N S, Zhou D F, Freedman D X. et al .
Lysergic acid diethylamide (LSD) administration selectively downregulates serotonin2
receptors in rat brain.
Neuropsychopharmacology.
1990;
3
137-148
MissingFormLabel
- 113
Kennett G A, Wood M D, Glen A. et al .
In vivo properties of SB 200646A, a 5-HT2C/ 2B receptor antagonist.
Br J Pharmacol.
1994;
111
797-802
MissingFormLabel
- 114
Heinz A, Knable M B, Weinberger D R.
Dopamine D 2 receptor imaging and neuroleptic drug response.
J Clin Psychiatry.
1996;
57 (Suppl 11)
84-88; discussion 89 – 93
MissingFormLabel
- 115
Barnes N M, Sharp T.
A review of central 5-HT receptors and their function.
Neuropharmacology.
1999;
38
1083-1152
MissingFormLabel
- 116
Huether G, Zhou D, Ruther E.
Causes and consequences of the loss of serotonergic presynapses elicited by the consumption
of 3,4-methylenedioxymethamphetamine (MDMA, ”ecstasy”) and its congeners.
J Neural Transm.
1997;
104
771-794
MissingFormLabel
- 117
Thomasius R, Zapletalova P, Petersen K. et al .
Mood, cognition and serotonin transporter availability in current and former ecstasy
(MDMA) users: the longitudinal perspective.
J Psychopharmacol.
2006;
20
211-225
MissingFormLabel
- 118
Buchert R, Thomasius R, Wilke F. et al .
A voxel-based PET investigation of the long-term effects of ”Ecstasy” consumption
on brain serotonin transporters.
Am J Psychiatry.
2004;
161
1181-1189
MissingFormLabel
- 119
Callahan B T, Cord B J, Ricaurte G A.
Long-term impairment of anterograde axonal transport along fiber projections originating
in the rostral raphe nuclei after treatment with fenfluramine or methylenedioxymethamphetamine.
Synapse.
2001;
40
113-121
MissingFormLabel
- 120
Molliver M E, Berger U V, Mamounas L A. et al .
Neurotoxicity of MDMA and related compounds: anatomic studies.
Ann N Y Acad Sci.
1990;
600
649-661
MissingFormLabel
- 121
Montgomery C, Fisk J E.
Ecstasy-related deficits in the updating component of executive processes.
Hum Psychopharmacol.
2008;
23
495-511
MissingFormLabel
- 122
Morgan M J.
Memory deficits associated with recreational use of „ecstasy” (MDMA).
Psychopharmacology (Berl).
1999;
141
30-36
MissingFormLabel
- 123
Verdejo-Garcia A J, Lopez-Torrecillas F, Aguilar de Arcos F. et al .
Differential effects of MDMA, cocaine, and cannabis use severity on distinctive components
of the executive functions in polysubstance users: a multiple regression analysis.
Addict Behav.
2005;
30
89-101
MissingFormLabel
- 124
Skelton M R, Williams M T, Vorhees C V.
Developmental effects of 3,4-methylenedioxymethamphetamine: a review.
Behav Pharmacol.
2008;
19
91-111
MissingFormLabel
1 Die dieser Arbeit zugrundeliegenden Untersuchungen wurden durch die DFG (GK-1156, an CK und KPL, RE1632/1-5 an AR, KFO 125 an AR und KPL; SFB 581 an AS und KPL, SFB TRR 58 an AR und KPL), das BMBF (IZKF Würzburg, 01KS9603, an KPL; IZKF N-27-N, an AR) und die EU (NEWMOOD LSHM-CT-2003-503474, an KPL) gefördert.
Claudia Kriegebaum
Klinik für Psychiatrie, Psychosomatik und Psychotherapie Universität Würzburg
Füchsleinstr. 15
97080 Würzburg
Email: claudia.kriegebaum@web.de