Subscribe to RSS
DOI: 10.1055/s-0029-1245240
© Georg Thieme Verlag KG Stuttgart · New York
Serotonin Kompakt – Teil 1[*]
Neurobiologische und entwicklungsgenetische GrundlagenSerotonin Now: Part 1Neurobiology and Developmental GeneticsPublication History
Publication Date:
25 March 2010 (online)

Zusammenfassung
Bereits in den 1960er-Jahren wurde eine Beteiligung von Serotonin (5-Hydroxytryptamin, 5-HT) an psychischen Krankheiten erkannt, was durch unterschiedlichste Forschungsansätze in den folgenden Jahren weiter untermauert werden konnte. Das Indolamin 5-HT wird zu den Monoamintransmittern gezählt und befindet sich in den serotonergen Neuronen (Raphe-Nuclei) des Hirnstamms sowie peripher hauptsächlich im Gastrointestinaltrakt und der Zirbeldrüse. 5-HT ist bei unterschiedlichstem kognitiven, emotionalen und autonomen Verhalten und bei zirkadianen Rhythmen beteiligt. Zusätzlich zu seiner Bedeutung als Neurotransmitter kommt 5-HT, das einem exakt geregelten Expressionsmuster unterliegt, eine wichtige Rolle während der pränatalen Entwicklung und auch in der adulten Neurogenese zu. Seine zahlreichen physiologischen und pathophysiologischen Effekte vermittelt 5-HT über spezifische prä- und postsynaptische 5-HT-Rezeptoren, deren Vorkommen und Wirkung hier näher ausgeführt werden. Der Serotonin-Transporter (SERT), der nach Ausschüttung des Botenstoffs in den synaptischen Spalt 5-HT aktiv in die Zelle zurücktransportiert, spielt nicht nur eine wichtige Rolle bei der Terminierung der serotonergen Neurotransmission, sondern ist auch ein wichtiges Angriffsziel für Antidepressiva. In diesem ersten Teil des Übersichtsartikels wird detailliert auf die neurobiologischen Grundlagen von 5-HT-Synthese, -Abbau und -Speicherung sowie die serotonerge Neurotransmission und die damit verbundenen physiologischen Effekte eingegangen, während der zweite Teil klinische Befunde näher erläutert und kritisch diskutiert.
Abstract
As soon as in the 1960’s, the role of serotonin (5-Hydroxytryptamin, 5-HT) in psychiatric disorders was realized, which was further substantiated by several lines of evidence amounting to a huge body of knowledge. The indolamine 5-HT belongs to the class of monoamine transmitters and can be found in the serotonergic neurons of the raphe nuclei in the brain stem. In the periphery, it is mainly present in the gastrointestinal system and the pineal gland. 5-HT is implicated in a variety of cognitive, emotional and vegetative behaviors, as well as in the regulation of circadian rhythms. Apart from its role as a neurotransmitter, it has an important function in prenatal development, where its expression pattern is tightly regulated, and in adult neurogenesis. The numerous effects of 5-HT are mediated by specific pre- and postsynaptic receptors, whose localization and functions are further described here. The serotonin transporter (SERT), which accomplishes the re-uptake of 5-HT into the neuron following its release in the synaptic cleft, not only has an important role in the termination of serotonergic neurotransmission but is also an important drug target for antidepressant compounds. In this part of the review, the neurobiological underpinnings of 5-HT synthesis, metabolism, and neurotransmission as well as the corresponding physiological consequences are summarized, while in the second part, an overview on clinical findings is provided and critically discussed.
Schlüsselwörter
Neurotransmitter - Metabolismus - Entwicklung - Physiologie - Serotonin-Transporter
Keywords
neurotransmitter - metabolism - development - physiology - serotonin transporter
1 Die dieser Arbeit zugrunde liegenden Untersuchungen wurden durch die DFG (GK-1156, an CK und KPL, RE1632/1-5 an AR, KFO 125 an AR und KPL; SFB 581 an AS und KPL, SFB TRR 58 an AR und KPL), das BMBF (IZKF Würzburg, 01KS9603, an KPL; IZKF N-27-N, an AR) und die EU (NEWMOOD LSHM-CT-2003-503474, an KPL) gefördert.
Literatur
- 1
Erspamer V, Vialli M.
Presence of enteramine in the skin of Amphibia.
Nature.
1951;
167
1033
MissingFormLabel
- 2
Rapport M M.
Serum vasoconstrictor (serotonin) the presence of creatinine in the complex; a proposed
structure of the vasoconstrictor principle.
J Biol Chem.
1949;
180
961-969
MissingFormLabel
- 3
Twarog B M.
Responses of a molluscan smooth muscle to acetylcholine and 5-hydroxytryptamine.
J Cell Physiol.
1954;
44
141-163
MissingFormLabel
- 4
Coppen A.
The biochemistry of affective disorders.
Br J Psychiatry.
1967;
113
1237-1264
MissingFormLabel
- 5
Coppen A, Shaw D M, Herzberg B. et al .
Tryptophan in the treatment of depression.
Lancet.
1967;
2
1178-1180
MissingFormLabel
- 6
Lesch K P.
Variation of serotonergic gene expression: neurodevelopment and the complexity of
response to psychopharmacologic drugs.
Eur Neuropsychopharmacol.
2001;
11
457-474
MissingFormLabel
- 7
Cordes S P.
Molecular genetics of the early development of hindbrain serotonergic neurons.
Clin Genet.
2005;
68
487-494
MissingFormLabel
- 8
Ye W, Shimamura K, Rubenstein J L. et al .
FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior
neural plate.
Cell.
1998;
93
755-766
MissingFormLabel
- 9
Alenina N, Bashammakh S, Bader M.
Specification and differentiation of serotonergic neurons.
Stem Cell Rev.
2006;
2
5-10
MissingFormLabel
- 10
Pattyn A, Simplicio N, Doorninck J H. et al .
Ascl1 /Mash1 is required for the development of central serotonergic neurons.
Nat Neurosci.
2004;
7
589-595
MissingFormLabel
- 11
Lauder J M.
Ontogeny of the serotonergic system in the rat: serotonin as a developmental signal.
Ann N Y Acad Sci.
1990;
600
297-313; discussion 314
MissingFormLabel
- 12
Shemer A V, Azmitia E C, Whitaker-Azmitia P M.
Dose-related effects of prenatal 5-methoxytryptamine (5-MT) on development of serotonin
terminal density and behavior.
Brain Res Dev Brain Res.
1991;
59
59-63
MissingFormLabel
- 13
Whitaker-Azmitia P M, Azmitia E C.
Autoregulation of fetal serotonergic neuronal development: role of high affinity serotonin
receptors.
Neurosci Lett.
1986;
67
307-312
MissingFormLabel
- 14
Liu J P, Lauder J M.
Serotonin and nialamide differentially regulate survival and growth of cultured serotonin
and catecholamine neurons.
Brain Res Dev Brain Res.
1991;
62
297-305
MissingFormLabel
- 15
Lauder J M.
Neurotransmitters as growth regulatory signals: role of receptors and second messengers.
Trends Neurosci.
1993;
16
233-240
MissingFormLabel
- 16
Lauder J M, Krebs van H.
Serotonin as a differentiation signal in early neurogenesis.
Dev Neurosci.
1978;
1
15-30
MissingFormLabel
- 17
Mazer C, Muneyyirci J, Taheny K. et al .
Serotonin depletion during synaptogenesis leads to decreased synaptic density and
learning deficits in the adult rat: a possible model of neurodevelopmental disorders
with cognitive deficits.
Brain Res.
1997;
760
68-73
MissingFormLabel
- 18
Gutknecht L, Kriegebaum C, Waider J. et al .
Spatio-temporal expression of tryptophan hydroxylase isoforms in murine and human
brain: convergent data from Tph2 knockout mice.
Eur Neuropsychopharmacol.
2009;
19
266-282
MissingFormLabel
- 19
Côté F, Fligny C, Bayard E. et al .
Maternal serotonin is crucial for murine embryonic development.
Proc Natl Acad Sci U S A.
2007;
104
329-334
MissingFormLabel
- 20
Lavdas A A, Blue M E, Lincoln J. et al .
Serotonin promotes the differentiation of glutamate neurons in organotypic slice cultures
of the developing cerebral cortex.
J Neurosci.
1997;
17
7872-7880
MissingFormLabel
- 21
Gaspar P, Cases O, Maroteaux L.
The developmental role of serotonin: news from mouse molecular genetics.
Nat Rev Neurosci.
2003;
4
1002-1012
MissingFormLabel
- 22
Lesch K P, Merschdorf U.
Impulsivity, aggression, and serotonin: a molecular psychobiological perspective.
Behav Sci Law.
2000;
18
581-604
MissingFormLabel
- 23
Gross C, Hen R.
The developmental origins of anxiety.
Nat Rev Neurosci.
2004;
5
545-552
MissingFormLabel
- 24
Galter D, Unsicker K.
Sequential activation of the 5-HT1(A) serotonin receptor and TrkB induces the serotonergic
neuronal phenotype.
Mol Cell Neurosci.
2000;
15
446-455
MissingFormLabel
- 25
Azmitia E C, Gannon P J, Kheck N M. et al .
Cellular localization of the 5-HT1A receptor in primate brain neurons and glial cells.
Neuropsychopharmacology.
1996;
14
35-46
MissingFormLabel
- 26
Riad M, Emerit M B, Hamon M.
Neurotrophic effects of ipsapirone and other 5-HT1A receptor agonists on septal cholinergic
neurons in culture.
Brain Res Dev Brain Res.
1994;
82
245-258
MissingFormLabel
- 27
Dahlstrom A, Fuxe K.
Localization of monoamines in the lower brain stem.
Experientia.
1964;
20
398-399
MissingFormLabel
- 28
Hornung J P.
The human raphe nuclei and the serotonergic system.
J Chem Neuroanat.
2003;
26
331-343
MissingFormLabel
- 29
Ormsbee H S 3 rd, Fondacaro J D.
Action of serotonin on the gastrointestinal tract.
Proc Soc Exp Biol Med.
1985;
178
333-338
MissingFormLabel
- 30
Walther D J, Peter J U, Winter S. et al .
Serotonylation of small GTPases is a signal transduction pathway that triggers platelet
alpha-granule release.
Cell.
2003;
115
851-862
MissingFormLabel
- 31
Finocchiaro L M, Arzt E S, Fernandez-Castelo S. et al .
Serotonin and melatonin synthesis in peripheral blood mononuclear cells: stimulation
by interferon-gamma as part of an immunomodulatory pathway.
J Interferon Res.
1988;
8
705-716
MissingFormLabel
- 32
Geba G P, Ptak W, Anderson G M. et al .
Delayed-type hypersensitivity in mast cell-deficient mice: dependence on platelets
for expression of contact sensitivity.
J Immunol.
1996;
157
557-565
MissingFormLabel
- 33
Rudd M L, Nicolas A N, Brown B L. et al .
Peritoneal macrophages express the serotonin transporter.
J Neuroimmunol.
2005;
159
113-118
MissingFormLabel
- 34
El-Nour H, Lundeberg L, Abdel-Magid N. et al .
Serotonergic mechanisms in human allergic contact dermatitis.
Acta Derm Venereol.
2007;
87
390-396
MissingFormLabel
- 35
Verhofstad A A, Steinbusch H W, Penke B. et al .
Serotonin-immunoreactive cells in the superior cervical ganglion of the rat. Evidence
for the existence of separate serotonin- and catecholamine-containing small ganglionic
cells.
Brain Res.
1981;
212
39-49
MissingFormLabel
- 36
Gershon M D.
Serotonin: its role and receptors in enteric neurotransmission.
Adv Exp Med Biol.
1991;
294
221-230
MissingFormLabel
- 37
Chidlow G, Hiscott P S, Osborne N N.
Expression of serotonin receptor mRNAs in human ciliary body: a polymerase chain reaction
study.
Graefes Arch Clin Exp Ophthalmol.
2004;
242
259-264
MissingFormLabel
- 38
Newman C, Wang D, Cutz E.
Serotonin (5-hydroxytryptamine) expression in pulmonary neuroendocrine cells (NE)
and a netumor cell line.
Adv Exp Med Biol.
1993;
337
73-78
MissingFormLabel
- 39
Roper S D.
Signal transduction and information processing in mammalian taste buds.
Pflugers Arch.
2007;
454
759-776
MissingFormLabel
- 40
Barbosa R M, Silva A M, Tome A R. et al .
Control of pulsatile 5-HT/insulin secretion from single mouse pancreatic islets by
intracellular calcium dynamics.
J Physiol.
1998;
510 (Pt 1)
135-143
MissingFormLabel
- 41
Ikeda K, Tojo K, Otsubo C. et al .
5-hydroxytryptamine synthesis in HL-1 cells and neonatal rat cardiocytes.
Biochem Biophys Res Commun.
2005;
328
522-525
MissingFormLabel
- 42
Matsuda M, Imaoka T, Vomachka A J. et al .
Serotonin regulates mammary gland development via an autocrine-paracrine loop.
Dev Cell.
2004;
6
193-203
MissingFormLabel
- 43
Meyer-Bernstein E L, Morin L P.
Differential serotonergic innervation of the suprachiasmatic nucleus and the intergeniculate
leaflet and its role in circadian rhythm modulation.
J Neurosci.
1996;
16
2097-2111
MissingFormLabel
- 44
Lerchl A.
Biological rhythms in the context of light at night (LAN).
Neuro Endocrinol Lett.
2002;
23 Suppl 2
23-27
MissingFormLabel
- 45
Bulian D, Pierpaoli W.
The pineal gland and cancer. I. Pinealectomy corrects congenital hormonal dysfunctions
and prolongs life of cancer-prone C 3 H/He mice.
J Neuroimmunol.
2000;
108
131-135
MissingFormLabel
- 46
Pierpaoli W, Bulian D, Arrighi S.
Transferrin treatment corrects aging-related immunologic and hormonal decay in old
mice.
Exp Gerontol.
2000;
35
401-408
MissingFormLabel
- 47
Reuss S, Concemius W, Stehle J. et al .
Effects of electrical stimulation of the superior cervical ganglia on the number of
”synaptic” ribbons and the activity of melatonin-forming enzymes in the rat pineal
gland.
Anat Embryol (Berl).
1989;
179
341-345
MissingFormLabel
- 48
Korf H W, Gall von C.
Mice, melatonin and the circadian system.
Mol Cell Endocrinol.
2006;
252
57-68
MissingFormLabel
- 49
Reiter R J, Leppaluoto J.
Melatonin as a hormone and an antioxidant: implications for organisms at high latitudes.
Int J Circumpolar Health.
1997;
56
4-11
MissingFormLabel
- 50
Walther D J, Bader M.
A unique central tryptophan hydroxylase isoform.
Biochem Pharmacol.
2003;
66
1673-1680
MissingFormLabel
- 51
Walther D J, Peter J U, Bashammakh S. et al .
Synthesis of serotonin by a second tryptophan hydroxylase isoform.
Science.
2003;
299
76
MissingFormLabel
- 52
Gutknecht L, Waider J, Kraft S. et al .
Deficiency of brain 5-HT synthesis but serotonergic neuron formation in Tph2 knockout
mice.
J Neural Transm.
2008;
115
1127-1132
MissingFormLabel
- 53
Weihe E, Schafer M K, Erickson J D. et al .
Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine
cells and neurons in rat.
J Mol Neurosci.
1994;
5
149-164
MissingFormLabel
- 54
Peter D, Liu Y, Sternini C. et al .
Differential expression of two vesicular monoamine transporters.
J Neurosci.
1995;
15
6179-6188
MissingFormLabel
- 55
Erickson J D, Schafer M K, Bonner T I. et al .
Distinct pharmacological properties and distribution in neurons and endocrine cells
of two isoforms of the human vesicular monoamine transporter.
Proc Natl Acad Sci U S A.
1996;
93
5166-5171
MissingFormLabel
- 56
Haase J, Killian A M, Magnani F. et al .
Regulation of the serotonin transporter by interacting proteins.
Biochem Soc Trans.
2001;
29
722-728
MissingFormLabel
- 57
Waldmeier P C.
Amine oxidases and their endogenous substrates (with special reference to monoamine
oxidase and the brain).
J Neural Transm Suppl.
1987;
23
55-72
MissingFormLabel
- 58
Rodriguez M J, Saura J, Billett E. et al .
MAO-A and MAO-B localisation in human lung and spleen.
Neurobiology (Bp).
2000;
8
243-248
MissingFormLabel
- 59
Rodriguez M J, Saura J, Finch C C. et al .
Localization of monoamine oxidase A and B in human pancreas, thyroid, and adrenal
glands.
J Histochem Cytochem.
2000;
48
147-151
MissingFormLabel
- 60
Torres G E, Gainetdinov R R, Caron M G.
Plasma membrane monoamine transporters: structure, regulation and function.
Nat Rev Neurosci.
2003;
4
13-25
MissingFormLabel
- 61
Blakely R D, De Felice L J, Hartzell H C.
Molecular physiology of norepinephrine and serotonin transporters.
J Exp Biol.
1994;
196
263-281
MissingFormLabel
- 62
Chen J C, Tonkiss J, Galler J R. et al .
Prenatal protein malnutrition in rats enhances serotonin release from hippocampus.
J Nutr.
1992;
122
2138-2143
MissingFormLabel
- 63
Ni W, Watts S W.
5-hydroxytryptamine in the cardiovascular system: focus on the serotonin transporter
(SERT).
Clin Exp Pharmacol Physiol.
2006;
33
575-583
MissingFormLabel
- 64
Ramamoorthy S, Cool D R, Mahesh V B. et al .
Regulation of the human serotonin transporter. Cholera toxin-induced stimulation of
serotonin uptake in human placental choriocarcinoma cells is accompanied by increased
serotonin transporter mRNA levels and serotonin transporter-specific ligand binding.
J Biol Chem.
1993;
268
21 626-21 631
MissingFormLabel
- 65
Jayanthi L D, Ramamoorthy S, Mahesh V B. et al .
Calmodulin-dependent regulation of the catalytic function of the human serotonin transporter
in placental choriocarcinoma cells.
J Biol Chem.
1994;
269
14424-14429
MissingFormLabel
- 66
Miller K J, Hoffman B J.
Adenosine A 3 receptors regulate serotonin transport via nitric oxide and cGMP.
J Biol Chem.
1994;
269
27351-27356
MissingFormLabel
- 67
Qian Y, Galli A, Ramamoorthy S. et al .
Protein kinase C activation regulates human serotonin transporters in HEK-293 cells
via altered cell surface expression.
J Neurosci.
1997;
17
45-57
MissingFormLabel
- 68
Zhu C B, Hewlett W A, Francis S H. et al .
Stimulation of serotonin transport by the cyclic GMP phosphodiesterase-5 inhibitor
sildenafil.
Eur J Pharmacol.
2004;
504
1-6
MissingFormLabel
- 69
Samuvel D J, Jayanthi L D, Bhat N R. et al .
A role for p38 mitogen-activated protein kinase in the regulation of the serotonin
transporter: evidence for distinct cellular mechanisms involved in transporter surface
expression.
J Neurosci.
2005;
25
29-41
MissingFormLabel
- 70
Bengel D, Heils A, Petri S. et al .
Gene structure and 5’-flanking regulatory region of the murine serotonin transporter.
Brain Res Mol Brain Res.
1997;
44
286-292
MissingFormLabel
- 71
Lesch K P, Balling U, Gross J. et al .
Organization of the human serotonin transporter gene.
J Neural Transm Gen Sect.
1994;
95
157-162
MissingFormLabel
- 72
Hoyer D, Clarke D E, Fozard J R. et al .
International Union of Pharmacology classification of receptors for 5-hydroxytryptamine
(Serotonin).
Pharmacol Rev.
1994;
46
157-203
MissingFormLabel
- 73
Raymond J R, Mukhin Y V, Gelasco A. et al .
Multiplicity of mechanisms of serotonin receptor signal transduction.
Pharmacol Ther.
2001;
92
179-212
MissingFormLabel
- 74
Francken B J, Jurzak M, Vanhauwe J F. et al .
The human 5-ht5A receptor couples to Gi/Go proteins and inhibits adenylate cyclase
in HEK 293 cells.
Eur J Pharmacol.
1998;
361
299-309
MissingFormLabel
- 75
Aune T M, Golden H W, McGrath K M.
Inhibitors of serotonin synthesis and antagonists of serotonin 1A receptors inhibit
T lymphocyte function in vitro and cell-mediated immunity in vivo.
J Immunol.
1994;
153
489-498
MissingFormLabel
- 76
Marazziti D, Marracci S, Palego L. et al .
Localization and gene expression of serotonin 1A (5 HT1A) receptors in human brain
postmortem.
Brain Res.
1994;
658
55-59
MissingFormLabel
- 77
Compaan J C, Groenink L, Gugten van der J. et al .
5-HT1A receptor agonist flesinoxan enhances Fos immunoreactivity in rat central amygdala,
bed nucleus of the stria terminalis and hypothalamus.
Eur J Neurosci.
1996;
8
2340-2347
MissingFormLabel
- 78
Drevets W C, Frank E, Price J C. et al .
PET imaging of serotonin 1A receptor binding in depression.
Biol Psychiatry.
1999;
46
1375-1387
MissingFormLabel
- 79
Barnes N M, Sharp T.
A review of central 5-HT receptors and their function.
Neuropharmacology.
1999;
38
1083-1152
MissingFormLabel
- 80
Kahn R S, Trestman R, Lawlor B A. et al .
Effects of ipsapirone in healthy subjects: a dose-response study.
Psychopharmacology (Berl).
1994;
114
155-160
MissingFormLabel
- 81
Izquierdo I, Medina J H.
Memory formation: the sequence of biochemical events in the hippocampus and its connection
to activity in other brain structures.
Neurobiol Learn Mem.
1997;
68
285-316
MissingFormLabel
- 82
Rausch J L, Johnson M E, Kasik K E. et al .
Temperature regulation in depression: functional 5 HT1A receptor adaptation differentiates
antidepressant response.
Neuropsychopharmacology.
2006;
31
2274-2280
MissingFormLabel
- 83
Sargent P A, Kjaer K H, Bench C J. et al .
Brain serotonin1A receptor binding measured by positron emission tomography with [11C]WAY-100
635: effects of depression and antidepressant treatment.
Arch Gen Psychiatry.
2000;
57
174-180
MissingFormLabel
- 84
Lundberg J, Borg J, Halldin C. et al .
A PET study on regional coexpression of 5-HT1A receptors and 5-HTT in the human brain.
Psychopharmacology (Berl).
2007;
195
425-433
MissingFormLabel
- 85
Bell R, Hobson H.
5-HT1A receptor influences on rodent social and agonistic behavior: a review and empirical
study.
Neurosci Biobehav Rev.
1994;
18
325-338
MissingFormLabel
- 86
Boer S F, Lesourd de M, Mocaer E. et al .
Selective antiaggressive effects of alnespirone in resident-intruder test are mediated
via 5-hydroxytryptamine1A receptors: A comparative pharmacological study with 8-hydroxy-2-dipropylaminotetralin,
ipsapirone, buspirone, eltoprazine, and WAY-100 635.
J Pharmacol Exp Ther.
1999;
288
1125-1133
MissingFormLabel
- 87
Heisler L K, Chu H M, Brennan T J. et al .
Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant
mice.
Proc Natl Acad Sci U S A.
1998;
95
15049-15054
MissingFormLabel
- 88
Parks C L, Robinson P S, Sibille E. et al .
Increased anxiety of mice lacking the serotonin1A receptor.
Proc Natl Acad Sci USA.
1998;
95
10734-10739
MissingFormLabel
- 89
Ramboz S, Oosting R, Amara D A. et al .
Serotonin receptor 1A knockout: an animal model of anxiety-related disorder.
Proc Natl Acad Sci U S A.
1998;
95
14476-14481
MissingFormLabel
- 90
Razzaque Z, Pickard J D, Ma Q P. et al .
5-HT1B-receptors and vascular reactivity in human isolated blood vessels: assessment
of the potential craniovascular selectivity of sumatriptan.
Br J Clin Pharmacol.
2002;
53
266-274
MissingFormLabel
- 91
Roy A, Brand N J, Yacoub M H.
Expression of 5-hydroxytryptamine receptor subtype messenger RNA in interstitial cells
from human heart valves.
J Heart Valve Dis.
2000;
9
256-260
MissingFormLabel
- 92
Uddman R, Longmore J, Cardell L O. et al .
Expression of 5-HT1B receptors in human nasal mucosa.
Acta Otolaryngol.
2001;
121
403-406
MissingFormLabel
- 93
Varnas K, Hurd Y L, Hall H.
Regional expression of 5-HT1B receptor mRNA in the human brain.
Synapse.
2005;
56
21-28
MissingFormLabel
- 94
Lowther S, De Paermentier F, Crompton M R. et al .
The distribution of 5-HT1D and 5-HT1E binding sites in human brain.
Eur J Pharmacol.
1992;
222
137-142
MissingFormLabel
- 95
Varnas K, Hall H, Bonaventure P. et al .
Autoradiographic mapping of 5-HT(1B) and 5-HT(1D) receptors in the post mortem human
brain using [(3)H]GR 125 743.
Brain Res.
2001;
915
47-57
MissingFormLabel
- 96
Brunner D, Buhot M C, Hen R. et al .
Anxiety, motor activation, and maternal-infant interactions in 5 HT1B knockout mice.
Behav Neurosci.
1999;
113
587-601
MissingFormLabel
- 97
Malleret G, Hen R, Guillou J L. et al .
5-HT1B receptor knock-out mice exhibit increased exploratory activity and enhanced
spatial memory performance in the Morris water maze.
J Neurosci.
1999;
19
6157-6168
MissingFormLabel
- 98
Ramboz S, Saudou F, Amara D A. et al .
5-HT1B receptor knock out – behavioral consequences.
Behav Brain Res.
1996;
73
305-312
MissingFormLabel
- 99
Saudou F, Amara D A, Dierich A. et al .
Enhanced aggressive behavior in mice lacking 5-HT1B receptor.
Science.
1994;
265
1875-1878
MissingFormLabel
- 100
Agosti R M.
5 HT1F- and 5 HT7-receptor agonists for the treatment of migraines.
CNS Neurol Disord Drug Targets.
2007;
6
235-237
MissingFormLabel
- 101
Pascual J, del Arco C, Romon T. et al .
Autoradiographic distribution of [3 H]sumatriptan-binding sites in post-mortem human
brain.
Cephalalgia.
1996;
16
317-322
MissingFormLabel
- 102
Bruinvels A T, Landwehrmeyer B, Gustafson E L. et al .
Localization of 5-HT1B, 5-HT1D alpha, 5-HT1E and 5-HT1F receptor messenger RNA in
rodent and primate brain.
Neuropharmacology.
1994;
33
367-386
MissingFormLabel
- 103
Ishida T, Hirata K, Sakoda T. et al .
Identification of mRNA for 5-HT1 and 5-HT2 receptor subtypes in human coronary arteries.
Cardiovasc Res.
1999;
41
267-274
MissingFormLabel
- 104
Pierce P A, Xie G X, Meuser T. et al .
5-Hydroxytryptamine receptor subtype messenger RNAs in human dorsal root ganglia:
a polymerase chain reaction study.
Neuroscience.
1997;
81
813-819
MissingFormLabel
- 105
Cook E H Jr, Fletcher K E, Wainwright M. et al .
Primary structure of the human platelet serotonin 5-HT2A receptor: identify with frontal
cortex serotonin 5-HT2A receptor.
J Neurochem.
1994;
63
465-469
MissingFormLabel
- 106
Nagatomo T, Rashid M, Abul Muntasir H. et al .
Functions of 5-HT2A receptor and its antagonists in the cardiovascular system.
Pharmacol Ther.
2004;
104
59-81
MissingFormLabel
- 107
Busatto G F, Pilowsky L S, Costa D C. et al .
Initial evaluation of 123I-5-I-R91150, a selective 5-HT2A ligand for single-photon
emission tomography, in healthy human subjects.
Eur J Nucl Med.
1997;
24
119-124
MissingFormLabel
- 108
Pompeiano M, Palacios J M, Mengod G.
Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A
and 5-HT2C receptors.
Brain Res Mol Brain Res.
1994;
23
163-178
MissingFormLabel
- 109
Dwivedi Y, Pandey G N.
Quantitation of 5 HT2A receptor mRNA in human postmortem brain using competitive RT-PCR.
Neuroreport.
1998;
9
3761-3765
MissingFormLabel
- 110
Lauterbach E C, Abdelhamid A, Annandale J B.
Posthallucinogen-like visual illusions (palinopsia) with risperidone in a patient
without previous hallucinogen exposure: possible relation to serotonin 5 HT2a receptor
blockade.
Pharmacopsychiatry.
2000;
33
38-41
MissingFormLabel
- 111
Glusa E, Roos A.
Endothelial 5-HT receptors mediate relaxation of porcine pulmonary arteries in response
to ergotamine and dihydroergotamine.
Br J Pharmacol.
1996;
119
330-334
MissingFormLabel
- 112
Schaerlinger B, Hickel P, Etienne N. et al .
Agonist actions of dihydroergotamine at 5-HT2B and 5-HT2C receptors and their possible
relevance to antimigraine efficacy.
Br J Pharmacol.
2003;
140
277-284
MissingFormLabel
- 113
Schmuck K, Ullmer C, Kalkman H O. et al .
Activation of meningeal 5-HT2B receptors: an early step in the generation of migraine
headache?.
Eur J Neurosci.
1996;
8
959-967
MissingFormLabel
- 114
Launay J M, Schneider B, Loric S. et al .
Serotonin transport and serotonin transporter-mediated antidepressant recognition
are controlled by 5-HT2B receptor signaling in serotonergic neuronal cells.
FASEB J.
2006;
20
1843-1854
MissingFormLabel
- 115
Westberg L, Bah J, Rastam M. et al .
Association between a polymorphism of the 5-HT2C receptor and weight loss in teenage
girls.
Neuropsychopharmacology.
2002;
26
789-793
MissingFormLabel
- 116
Harada K, Aota M, Inoue T. et al .
Anxiolytic activity of a novel potent serotonin 5-HT2C receptor antagonist FR 260
010: a comparison with diazepam and buspirone.
Eur J Pharmacol.
2006;
553
171-184
MissingFormLabel
- 117
Rex A, Bert B, Fink H.
History and new developments. The pharmacology of 5-ht3 antagonists.
Pharm Unserer Zeit.
2007;
36
342-353
MissingFormLabel
- 118
Tecott L H, Maricq A V, Julius D.
Nervous system distribution of the serotonin 5-HT3 receptor mRNA.
Proc Natl Acad Sci U S A.
1993;
90
1430-1434
MissingFormLabel
- 119
Votolato N A, Stern S, Caputo R M.
Serotonergic antidepressants and urinary incontinence.
Int Urogynecol J Pelvic Floor Dysfunct.
2000;
11
386-388
MissingFormLabel
- 120
Varnas K, Halldin C, Pike V W. et al .
Distribution of 5-HT4 receptors in the postmortem human brain--an autoradiographic
study using [125I]SB 207 710.
Eur Neuropsychopharmacol.
2003;
13
228-234
MissingFormLabel
- 121
Cartier D, Jegou S, Parmentier F. et al .
Expression profile of serotonin4 (5-HT4) receptors in adrenocortical aldosterone-producing
adenomas.
Eur J Endocrinol.
2005;
153
939-947
MissingFormLabel
- 122
Kaumann A J, Levy F O.
5-hydroxytryptamine receptors in the human cardiovascular system.
Pharmacol Ther.
2006;
111
674-706
MissingFormLabel
- 123
Bockaert J, Claeysen S, Compan V. et al .
5-HT4 receptors.
Curr Drug Targets CNS Neurol Disord.
2004;
3
39-51
MissingFormLabel
- 124
Taniyama K, Makimoto N, Furuichi A. et al .
Functions of peripheral 5-hydroxytryptamine receptors, especially 5-hydroxytryptamine4
receptor, in gastrointestinal motility.
J Gastroenterol.
2000;
35
575-582
MissingFormLabel
- 125
Nelson D L.
5-HT5 receptors.
Curr Drug Targets CNS Neurol Disord.
2004;
3
53-58
MissingFormLabel
- 126
Woolley M L, Marsden C A, Fone K C.
5-ht6 receptors.
Curr Drug Targets CNS Neurol Disord.
2004;
3
59-79
MissingFormLabel
- 127
Thomas D R, Hagan J J.
5-HT7 receptors.
Curr Drug Targets CNS Neurol Disord.
2004;
3
81-90
MissingFormLabel
- 128
Lesch K P, Zeng Y, Reif A. et al .
Anxiety-related traits in mice with modified genes of the serotonergic pathway.
Eur J Pharmacol.
2003;
480
185-204
MissingFormLabel
1 Die dieser Arbeit zugrunde liegenden Untersuchungen wurden durch die DFG (GK-1156, an CK und KPL, RE1632/1-5 an AR, KFO 125 an AR und KPL; SFB 581 an AS und KPL, SFB TRR 58 an AR und KPL), das BMBF (IZKF Würzburg, 01KS9603, an KPL; IZKF N-27-N, an AR) und die EU (NEWMOOD LSHM-CT-2003-503474, an KPL) gefördert.
Claudia Kriegebaum
Klinik für Psychiatrie, Psychosomatik und Psychotherapie, Universität Würzburg
Füchsleinstr. 15
97080 Würzburg
Email: claudia.kriegebaum@web.de