Klinische Neurophysiologie 2009; 40(4): 233-238
DOI: 10.1055/s-0029-1242732
Originalia

© Georg Thieme Verlag KG Stuttgart · New York

Neuropharmakologisches fMRT

Neuropharmacological fMRIC. M. Thiel1
  • 1Institut für Psychologie, Carl von Ossietzky Universität Oldenburg
Further Information

Publication History

Publication Date:
28 December 2009 (online)

Zusammenfassung

Neuropharmakologische fMRT Studien untersuchen die neuralen Effekte akut oder chronisch verabreichter Pharmaka im gesunden und kranken menschlichen Gehirn. Dabei steht oft die Frage nach der Modulation von Hirnaktivität im Rahmen sensorischer, motorischer oder kognitiver Aktivität im Vordergrund. Besonders bei gesunden Probanden gibt es mittlerweile viele neuropharmakologische fMRT Studien, die unser Verständnis der neurochemischen Modulation verbessert haben. Beispiele aus dem dopaminergen, cholinergen und noradrenergen System werden erläutert. Auch im Bereich der klinischen Neurowissenschaften gibt es einige neuropharmakologische fMRT Studien, die sich mit der neurochemischen Modulation kognitiver Funktionen bei neurologischen oder psychiatrischen Störungen beschäftigen. Aus dem Gebiet des Schlaganfalls und der Alzheimererkrankung werden einige Arbeiten exemplarisch dargestellt. Der letzte Abschnitt des Artikels gibt einen Überblick über zukünftige Entwicklungen im Bereich neuropharmakologischer Bildgebungsstudien. Hier sind insbesondere Konnektivitätsanalysen von Bedeutung, die die Effekte von Pharmaka auf die aufgabenabhängige oder aufgabenunabhängige Kopplung von Hirnnetzwerken untersuchen. Ein erstrebenswertes Ziel auf lange Sicht ist eine größere Fokussierung auf individuelle Unterschiede, die eine Voraussetzung für die Verwendung neuropharmakologischer fMRT Studien als möglicher diagnostischer Marker bilden.

Abstract

Neuropharmacological fMRI studies investigate the neural effects of acutely or chronically administered drugs in the healthy and damaged human brain. In most studies, the focus of research is on the modulatory role of the drug in relation to cognitively induced brain activity. There are many neuropharmacological fMRI studies in healthy human volunteers that have increased our understanding of the neurochemical modulation of cognitive function. Some of these studies related to the dopaminergic, cholinergic and noradrenergic systems are illustrated. Other neuropharmacological fMRI studies have investigated the modulatory role of drugs in patients with neurological or psychiatric conditions. I will illustrate some examples in the area of stroke and Alzheimer's disease. Finally, this paper will address future developments in the area of neuropharmacological fMRI. These include analyses of connectivity that investigate the effects of drugs on task-related or task-unrelated coupling between neural networks. In the long run, neuropharmacological fMRI studies should focus on the role of individual differences in drug action because this is a prerequisite for the use of neuropharmacological fMRI as a potential diagnostic marker.

Literatur

  • 1 Bloom AS, Hoffmann RG, Fuller SA. et al . Determination of drug-induced changes in functional MRI signal using a pharmacokinetic model.  Hum Brain Mapp. 1999;  8 235-244
  • 2 Stein EA, Pankiewicz J, Harsch HH. et al . Nicotine-induced limbic cortical activation in the human brain: a functional MRI study.  Am J Psychiatry. 1998;  155 1009-1015
  • 3 Thiel CM, Fink GR. Neuropharmakologische funktionelle Bildgebung. In Funktionelle Kernspintomografie in Psychiatrie und Neurologie. Schneider F, Fink GR (editors) Springer 2006 pp. 165-175
  • 4 Thiel CM, Zilles K, Fink GR. Nicotine modulates reorienting of visuospatial attention and neural activity in human parietal cortex.  Neuropsychopharm. 2005;  30 810-820
  • 5 Giessing C, Thiel CM, Rosler F. et al . The modulatory effects of nicotine on parietal cortex activity in a cued target detection task depend on cue reliability.  Neurosci. 2006;  137 853-864
  • 6 Thiel CM, Fink GR. Effects of the cholinergic agonist nicotine on reorienting of visual spatial attention and top-down attentional control.  Neurosci. 2008;  152 381-390
  • 7 Vossel S, Thiel CM, Fink GR. Behavioral and neural effects of nicotine on visuospatial attentional reorienting in non-smoking subjects.  Neuropsychopharm. 2008;  33 731-738
  • 8 Hahn B, Ross TJ, Wolkenberg FA. et al . Performance effects of nicotine during selective attention, divided attention, and simple stimulus detection: an fMRI study.  Cereb Cortex. 2009;  19 1990-2000
  • 9 Hahn B, Ross TJ, Yang Y. et al . Nicotine enhances visuospatial attention by deactivating areas of the resting brain default network.  J Neurosci. 2007;  27 3477-3489
  • 10 Coull JT, Thiel CM. Functional Imaging of Cognitive Psychopharmacology. In Human Brain Function. Frackowiak R, Friston KJ, Frith CD, Dolan RJ, Price CJ, Ashburner J et al. (editors) Elsevier 2004 pp. 303-327
  • 11 Thiel CM, Fink GR. Pharmakologische Ansätze im fMRT. In Funktionelle Kernspintomografie in Psychiatrie und Neurologie. Schneider F, Fink GR (editors) Springer 2005
  • 12 Honey G, Bullmore E. Human pharmacological MRI.  Trends Pharmacol Sci. 2004;  25 366-374
  • 13 Buhmann C, Glauche V, Sturenburg HJ. et al . Pharmacologically modulated fMRI – cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients.  Brain. 2003;  126 451-461
  • 14 Pessiglione M, Seymour B, Flandin G. et al . Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans.  Nature. 2006;  442 1042-1045
  • 15 Pleger B, Ruff CC, Blankenburg F. et al . Influence of dopaminergically mediated reward on somatosensory decision-making.  PLoS Biol. 2009;  7 e1000164
  • 16 Mattay VS, Callicott JH, Bertolino A. et al . Effects of dextroamphetamine on cognitive performance and cortical activation.  Neuroimage. 2000;  12 268-275
  • 17 Mehta MA, Owen AM, Sahakian BJ. et al . Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain.  J Neurosci. 2000;  20 RC65
  • 18 Dodds CM, Clark L, Dove A. et al . The dopamine D2 receptor antagonist sulpiride modulates striatal BOLD signal during the manipulation of information in working memory.  Psychopharmacology (Berl). 2009; 
  • 19 Hershey T, Black KJ, Hartlein J. et al . Dopaminergic modulation of response inhibition: an fMRI study.  Brain Res Cogn Brain Res. 2004;  20 438-448
  • 20 Morcom AM, Bullmore ET, Huppert FA. et al . Memory Encoding and Dopamine in the Aging Brain: A Psychopharmacological Neuroimaging Study.  Cereb Cortex. 2009; 
  • 21 Newhouse PA, Potter A, Singh A. Effects of nicotinic stimulation on cognitive performance.  Curr Opin Pharmacol. 2004;  4 36-46
  • 22 Thiel CM, Friston KJ, Dolan RJ. Cholinergic modulation of experience-dependent plasticity in human auditory cortex.  Neuron. 2002;  35 567-574
  • 23 Silver MA, Shenhav A, D'Esposito M. Cholinergic enhancement reduces spatial spread of visual responses in human early visual cortex.  Neuron. 2008;  60 904-914
  • 24 Furey ML, Pietrini P, Haxby JV. Cholinergic enhancement and increased selectivity of perceptual processing during working memory.  Science. 2000;  290 2315-2319
  • 25 Bentley P, Husain M, Dolan RJ. Effects of cholinergic enhancement on visual stimulation, spatial attention, and spatial working memory.  Neuron. 2004;  41 969-982
  • 26 Sperling R, Greve D, Dale A. et al . Functional MRI detection of pharmacologically induced memory impairment.  Proc Natl Acad Sci USA. 2002;  99 455-460
  • 27 Bullmore E, Suckling J, Zelaya F. et al . Practice and difficulty evoke anatomically and pharmacologically dissociable brain activation dynamics.  Cereb Cortex. 2003;  13 144-154
  • 28 Schon K, Atri A, Hasselmo ME. et al . Scopolamine reduces persistent activity related to long-term encoding in the parahippocampal gyrus during delayed matching in humans.  J Neurosci. 2005;  25 9112-9123
  • 29 Kukolja J, Thiel CM, Fink GR. Cholinergic stimulation enhances neural activity associated with encoding but reduces neural activity associated with retrieval in humans.  J Neurosci. 2009;  29 8119-8128
  • 30 Herrero JL, Roberts MJ, Delicato LS. et al . Acetylcholine contributes through muscarinic receptors to attentional modulation in V1.  Nature. 2008;  454 1110-1114
  • 31 Coull JT, Jones ME, Egan TD. et al . Attentional effects of noradrenaline vary with arousal level: selective activation of thalamic pulvinar in humans.  Neuroimage. 2004;  22 315-322
  • 32 Coull JT, Jones M, Egan T. et al . Noradrenergic a2 attentional effects vary with arousal level: modulation of the thalamic pulvinar in healthy humans.  Neuroimage. 2003;  19
  • 33 Coull JT, Nobre AC, Frith CD. The noradrenergic alpha2 agonist clonidine modulates behavioural and neuroanatomical correlates of human attentional orienting and alerting.  Cereb Cortex. 2001;  11 73-84
  • 34 Chamberlain SR, Hampshire A, Muller U. et al . Atomoxetine modulates right inferior frontal activation during inhibitory control: a pharmacological functional magnetic resonance imaging study.  Biol Psychiatry. 2009;  65 550-555
  • 35 Strange BA, Dolan RJ. Beta-adrenergic modulation of emotional memory-evoked human amygdala and hippocampal responses.  Proc Natl Acad Sci USA. 2004;  101 11454-11458
  • 36 Kukolja J, Schlapfer TE, Keysers C. et al . Modeling a negative response bias in the human amygdala by noradrenergic-glucocorticoid interactions.  J Neurosci. 2008;  28 12868-12876
  • 37 Pariente J, Loubinoux I, Carel C. et al . Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke.  Ann Neurol. 2001;  50 718-729
  • 38 Tardy J, Pariente J, Leger A. et al . Methylphenidate modulates cerebral post-stroke reorganization.  Neuroimage. 2006;  33 913-922
  • 39 van ET, Ballanger B, Pellecchia G. et al . Dopamine Agonists Diminish Value Sensitivity of the Orbitofrontal Cortex: A Trigger for Pathological Gambling in Parkinson's Disease?.  Neuropsychopharm. 2009; 
  • 40 Goekoop R, Scheltens P, Barkhof F. et al . Cholinergic challenge in Alzheimer patients and mild cognitive impairment differentially affects hippocampal activation--a pharmacological fMRI study.  Brain. 2006;  129 141-157
  • 41 Bentley P, Driver J, Dolan RJ. Cholinesterase inhibition modulates visual and attentional brain responses in Alzheimer's disease and health.  Brain. 2008;  131 409-424
  • 42 Bentley P, Driver J, Dolan RJ. Modulation of fusiform cortex activity by cholinesterase inhibition predicts effects on subsequent memory.  Brain. 2009;  132 2356-2371
  • 43 Honey GD, Bullmore ET, Soni W. et al . Differences in frontal cortical activation by a working memory task after substitution of risperidone for typical antipsychotic drugs in patients with schizophrenia.  Proc Natl Acad Sci USA. 1999;  96 13432-13437
  • 44 Hong LE, Schroeder M, Ross TJ. et al . Nicotine Enhances but Does Not Normalize Visual Sustained Attention and the Associated Brain Network in Schizophrenia.  Schizophr Bull. 2009; 
  • 45 Loubinoux I, Pariente J, Boulanouar K. et al . A single dose of the serotonin neurotransmission agonist paroxetine enhances motor output: double-blind, placebo-controlled, fMRI study in healthy subjects.  Neuroimage. 2002;  15 26-36
  • 46 Sarter M, Bruno JP. Developmental origins of the age-related decline in cortical cholinergic function and associated cognitive abilities.  Neurobiol Aging. 2004;  25 1127-1139
  • 47 Backman L, Ginovart N, Dixon RA. et al . Age-related cognitive deficits mediated by changes in the striatal dopamine system.  Am J Psychiatry. 2000;  157 635-637
  • 48 Guye M, Bartolomei F, Ranjeva JP. Imaging structural and functional connectivity: towards a unified definition of human brain organization?.  Curr Opin Neurol. 2008;  21 393-403
  • 49 Minzenberg MJ, Watrous AJ, Yoon JH. et al . Modafinil shifts human locus coeruleus to low-tonic, high-phasic activity during functional MRI.  Science. 2008;  322 1700-1702
  • 50 Grefkes C, Wang LE, Eickhoff SB. et al . Noradrenergic Modulation of Cortical Networks Engaged in Visuomotor Processing.  Cereb Cortex. 2009; 
  • 51 Greicius M. Resting-state functional connectivity in neuropsychiatric disorders.  Curr Opin Neurol. 2008;  21 424-430
  • 52 Fox MD, Corbetta M, Snyder AZ. et al . Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems.  Proc Natl Acad Sci USA. 2006;  103 10046-10051
  • 53 Hong LE, Gu H, Yang Y. et al . Association of nicotine addiction and nicotine's actions with separate cingulate cortex functional circuits.  Arch Gen Psychiatry. 2009;  66 431-441
  • 54 Kelly C, de ZG, Di MA. et al . L-dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study.  J Neurosci. 2009;  29 7364-7378
  • 55 Achard S, Bullmore E. Efficiency and cost of economical brain functional networks.  PLoS Comput Biol. 2007;  3 e17
  • 56 Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems.  Nat Rev Neurosci. 2009;  10 186-198
  • 57 Giessing C, Fink GR, Rosler F. et al . fMRI data predict individual differences of behavioral effects of nicotine: a partial least square analysis.  J Cogn Neurosci. 2007;  19 658-670
  • 58 Honey GD, Corlett PR, Absalom AR. et al . Individual differences in psychotic effects of ketamine are predicted by brain function measured under placebo.  J Neurosci. 2008;  28 6295-6303
  • 59 Egan MF, Goldberg TE, Kolachana BS. et al . Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia.  Proc Natl Acad Sci USA. 2001;  98 6917-6922
  • 60 Jocham G, Klein TA, Neumann J. et al . Dopamine DRD2 polymorphism alters reversal learning and associated neural activity.  J Neurosci. 2009;  29 3695-3704
  • 61 Mattay VS, Goldberg TE, Fera F. et al . Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine.  Proc Natl Acad Sci USA. 2003;  100 6186-6191

Korrespondenzadresse

Prof. Dr. rer. nat. C. M. Thiel

AG Kognitive Neurobiologie

Institut für Psychologie

Carl von Ossietzky Universität

Oldenburg

26111 Oldenburg

Email: Christiane.thiel@uni-oldenburg.de