Deutsche Zeitschrift für Onkologie 2009; 41(4): 163-171
DOI: 10.1055/s-0029-1242534
Forschung

© Karl F. Haug Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG

Chronische Entzündungen – Rolle am Tumorgeschehen

Thomas Dittmar, Bernd Niggemann, Kurt S. Zänker
Further Information

Publication History

Publication Date:
04 January 2010 (online)

Zusammenfassung

Die Erkenntnis, dass ein Zusammenhang zwischen chronischen Entzündungen und einem erhöhten Krebsrisiko besteht, wurde bereits vor mehr als 150 Jahren vom Berliner Mediziner Rudolph Virchow beschrieben. Heute wird vermutet, dass ca. 10-15 % aller humanen Krebserkrankungen auf chronische Entzündungsprozesse zurückzuführen sind, wobei die Ursachen sowohl auf humanpathogene Keime (z. B. Helicobacter pylori) als auch auf anorganische/organische Substanzen/Faktoren (Asbestfasern, Magensäure, Zigarettenrauch) zurückgeführt werden können. Chronisch entzündetes Gewebe stellt ein potenziell transformierendes Milieu dar, da es reich an Wachstumsfaktoren, Zytokinen und Chemokinen ist, welche die proliferatorische Aktivität von Zielzellen triggern, sowie an radikalischen Sauerstoff-/Stickstoffverbindungen, die bei hoher Konzentration Schädigungen der DNS bewirken. Durch die Faktor vermittelte bzw. inhärente Zellteilungsaktivität der Zielzellen, kombiniert mit mutagen wirkenden radikalischen Sauerstoff-/Stickstoffverbindungen, kann es zur Akkumulation von chromosomalen Aberrationen und nachfolgend zur malignen Transformation der Zielzellen kommen. Entgegen der alten Lehrmeinung, dass Krebs seinen Ursprung in somatischen Zellen hat, ist heute bekannt, dass die Ursprungszellen für maligne Transformationen Stammzellen (Gewebestammzellen bzw. rekrutierte Knochenmarkstammzellen) bzw. deren Progenitorzellen sind, aus denen die tumorinitiierenden Krebsstammzellen hervorgehen. So konnte z. B. anhand eines etablierten Mausmodells zur Analyse des durch H. felis induzierten Magenadenokarzinoms gezeigt werden, dass das neoplastische Gewebe aus rekrutierten Knochenmarkstammzellen hervorgegangen ist. Neben ihrer Rolle in der Karzinogenese sind chronische Entzündungsreaktionen darüber hinaus maßgeblich an der Progression von Tumorerkrankungen beteiligt. Fatal hierbei ist die symbiotische Beziehung zwischen tumorassoziierten Makrophagen (TAM) und Tumorzellen. TAM sind an sämtlichen Prozessen beteiligt, die eine erhöhte Malignität der Tumorerkrankung nach sich ziehen. Hierzu zählen die Neoangiogenese, die Proliferation sowie die Invasion und Metastasierung von Tumorzellen wie auch die Suppression von zytotoxischen T-Zellen.

Summary

The connection between chronically inflamed tissues and an increased risk to get cancer was already described by Rudolph Virchow nearly 150 years ago. Today, we know that about 10 to 15 % of human cancers are attributed to chronic infections and/or inflammatory conditions caused by pathogens like Helicobacter pylori and/or inorganic/organic agents such as asbestos fibers, gastric acid or smoke. Chronically inflamed tissues are characterized by an aberrant mix of growth factors, cytokines and chemokines, which induce cell proliferation, as well as reactive oxygen and nitrogen species that will cause DNA damages. Thus, chronically inflamed tissues exhibit an increased cell transformation capacity because dividing cells could accumulate chromosomal aberrations, which ultimately can give rise to a malignant phenotype. To date, we know that cancer has its origin in cancer stem cells, which can originate from either adult tissue stem cells or committed progenitor cells. In case of chronically inflamed gastric tissue it was demonstrated that gastric cancer can originate from recruited bone marrow-derived stem cells. Chronically inflamed conditions do also play a role in tumor progression since tumor tissue resembles chronically inflamed tissues. Thereby, a pivotal role has been addressed to tumor-associated macrophages (TAMs). TAMs are stimulated by tumor cells and vice versa thus indicating a symbiotically relationship between these cellular entities. In fact, TAMs are participated in all mechanisms that increase tumor malignancy including neoangiogenesis, proliferation, invasion and metastasis as well as suppression of cytotoxic T lymphocytes.

Literatur

  • 01 Al-Hajj M, Wicha M S, Benito-Hernandez A, Morrison S J, Clarke M F. Prospective identification of tumorigenic breast cancer cells.  Proc Natl Acad Sci USA. 2003;  100 3983-3988
  • 02 Ando S, Abe R, Sasaki M. et al . Bone marrow-derived cells are not the origin of the cancer stem cells in ultraviolet-induced skin cancer.  Am J Pathol. 2009;  174 595-601
  • 03 Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow?.  Lancet. 2001;  357 539-545
  • 04 Bonnet D, Dick J E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.  Nat Med. 1997;  3 730-737
  • 05 Chakraborty A K, Sodi S, Rachkovsky M. et al . A spontaneous murine melanoma lung metastasis comprised of host x tumor hybrids.  Cancer Res. 2000;  60 2512-2519
  • 06 Clarke M F, Dick J E, Dirks P B. et al . Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells.  Cancer Res. 2006;  66 9339-9344
  • 07 Cocco P, Dosemeci M, Rice C. Lung cancer among silica-exposed workers: the quest for truth between chance and necessity.  La Medicina del lavoro. 2007;  98 3-17
  • 08 Cohnheim J. Ueber entzuendung und eiterung.  Path Anat Physiol Klin Med. 1867;  40 1-79
  • 09 Cohnheim J. Congenitales, quergestreiftes Muskelsarkom der Nieren.  Virchows Arch Pathol Anat. 1875;  65 64-69
  • 10 Coussens L M, Werb Z. Inflammation and cancer.  Nature. 2002;  420 860-867
  • 11 Dalerba P, Dylla S J, Park I K. et al . Phenotypic characterization of human colorectal cancer stem cells.  Proc Natl Acad Sci USA. 2007;  104 10158-10163
  • 12 David Dong Z M, Aplin A C, Nicosia R F. Regulation of angiogenesis by macrophages, dendritic cells, and circulating myelomonocytic cells.  Curr Pharm Des. 2009;  15 365-379
  • 13 Dittmar T, Seidel J, Zaenker K S, Niggemann B. Carcinogenesis driven by bone marrow-derived stem cells.  Contrib Microbiol. 2006;  13 156-169
  • 14 Dvorak H F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing.  N Engl J Med. 1986;  315 1650-1659
  • 15 Eisenberg L M, Eisenberg C A. Stem cell plasticity, cell fusion, and transdifferentiation.  Birth Defects Res Part C Embryo Today. 2003;  69 209-218
  • 16 El-Omar E M, Rabkin C S, Gammon M D. et al . Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms.  Gastroenterology. 2003;  124 1193-1201
  • 17 Fearon E R, Vogelstein B. A genetic model for colorectal tumorigenesis.  Cell. 1990;  61 759-767
  • 18 Higashi H, Tsutsumi R, Fujita A. et al . Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites.  Proc Natl Acad Sci USA. 2002;  99 14428-14433
  • 19 Houghton J. Bone-marrow-derived cells and cancer–an opportunity for improved therapy.  Nature clinical practice. 2007;  4 2-3
  • 20 Houghton J, Stoicov C, Nomura S. et al . Gastric cancer originating from bone marrow-derived cells.  Science. 2004;  306 1568-1571
  • 21 Ito K, Bernardi R, Morotti A. et al . PML targeting eradicates quiescent leukaemia-initiating cells.  Nature. 2008;  453 1072-8
  • 22 Jaiswal S, Traver D, Miyamoto T. et al . Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias.  Proc Natl Acad Sci USA. 2003;  100 10002-10007
  • 23 Jamieson C H, Ailles L E, Dylla S J. et al . Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML.  N Engl J Med. 2004;  351 657-667
  • 24 Jang Y Y, Collector M I, Baylin S B, Diehl A M, Sharkis S J. Hematopoietic stem cells convert into liver cells within days without fusion.  Nat Cell Biol. 2004;  6 532-539
  • 25 Kamp D W. Asbestos-induced lung diseases: an update.  Transl Res. 2009;  153 143-152
  • 26 Kleeff J, Kusama T, Rossi D L. et al . Detection and localization of Mip-3alpha/LARC/Exodus, a macrophage proinflammatory chemokine, and its CCR6 receptor in human pancreatic cancer.  Int J Cancer. 1999;  81 650-657
  • 27 Kollet O, Shivtiel S, Chen Y Q. et al . HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver.  J Clin Invest. 2003;  112 160-169
  • 28 Krivtsov A V, Twomey D, Feng Z. et al . Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9.  Nature. 2006;  442 818-822
  • 29 Kuwana M, Okazaki Y, Kodama H. et al . Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation.  J Leukoc Biol. 2003;  74 833-845
  • 30 LaBarge M A, Blau H M. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury.  Cell. 2002;  111 589-601
  • 31 Leung W K. Helicobacter pylori and gastric neoplasia.  Contrib Microbiol. 2006;  13 66-80
  • 32 Lewis C, Murdoch C. Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies.  Am J Pathol. 2005;  167 627-635
  • 33 Li C, Heidt D G, Dalerba P. et al . Identification of pancreatic cancer stem cells.  Cancer Res. 2007;  67 1030-1037
  • 34 Li F, Tiede B, Massague J, Kang Y. Beyond tumorigenesis: cancer stem cells in metastasis.  Cell research. 2007;  17 3-14
  • 35 Li R, Sonik A, Stindl R, Rasnick D, Duesberg P. Aneuploidy versus gene mutation hypothesis of cancer: recent study claims mutation, but is found to support aneuploidy.  Proc Natl Acad Sci USA. 2000;  97 3236-3241
  • 36 Loebinger M R, Eddaoudi A, Davies D, Janes S M. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer.  Cancer Res. 2009;  69 4134-4142
  • 37 Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L. The origin and function of tumor-associated macrophages.  Immunol Today. 1992;  13 265-270
  • 38 Mertens F, Johansson B, Hoglund M, Mitelman F. Chromosomal imbalance maps of malignant solid tumors: a cytogenetic survey of 3185 neoplasms.  Cancer Res. 1997;  57 2765-2780
  • 39 Moustakas A, Pardali K, Gaal A, Heldin C H. Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation.  Immunol Lett. 2002;  82 85-91
  • 40 Nakamizo A, Marini F, Amano T. et al . Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas.  Cancer Res. 2005;  65 3307-3318
  • 41 O'Brien C A, Pollett A, Gallinger S, Dick J E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice.  Nature. 2007;  445 106-110
  • 42 O'Sullivan C, Lewis C E, Harris A L, McGee J O. Secretion of epidermal growth factor by macrophages associated with breast carcinoma.  Lancet. 1993;  342 148-149
  • 43 Orlic D, Kajstura J, Chimenti S. et al . Bone marrow cells regenerate infarcted myocardium.  Nature. 2001;  410 701-705
  • 44 Rachkovsky M, Sodi S, Chakraborty A. et al . Melanoma x macrophage hybrids with enhanced metastatic potential.  Clin Exp Metastasis. 1998;  16 299-312
  • 45 Radisky D C, Levy D D, Littlepage L E. et al . Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability.  Nature. 2005;  436 123-127
  • 46 Randolph G J, Beaulieu S, Lebecque S, Steinman R M, Muller W A. Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking.  Science. 1998;  282 480-483
  • 47 Reya T, Morrison S J, Clarke M F, Weissman I L. Stem cells, cancer, and cancer stem cells.  Nature. 2001;  414 105-111
  • 48 Rizvi A Z, Swain J R, Davies P S. et al . Bone marrow-derived cells fuse with normal and transformed intestinal stem cells.  Proc Natl Acad Sci USA. 2006;  103 6321-6325
  • 49 Schatton T, Murphy G F, Frank N Y. et al . Identification of cells initiating human melanomas.  Nature. 2008;  451 345-349
  • 50 Sell S. Stem cell origin of cancer and differentiation therapy.  Crit Rev Oncol Hematol. 2004;  51 1-28
  • 51 Singh S K, Hawkins C, Clarke I D. et al . Identification of human brain tumour initiating cells.  Nature. 2004;  432 396-401
  • 52 Smart S J, Casale T B. TNF-alpha-induced transendothelial neutrophil migration is IL-8 dependent.  Am J Physiol. 1994;  266 L238-L245
  • 53 Studeny M, Marini P C, Dembinski J L. et al . Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents.  J Natl Cancer Inst. 2004;  96 1593-1603
  • 54 Sun B, Nishihira J, Yoshiki T. et al . Macrophage migration inhibitory factor promotes tumor invasion and metastasis via the Rho-dependent pathway.  Clin Cancer Res. 2005;  11 1050-1058
  • 55 Thomas-Ecker S, Lindecke A, Hatzmann W. et al . Alteration in the gene expression pattern of primary monocytes after adhesion to endothelial cells.  Proc Natl Acad Sci USA. 2007;  104 5539-5544
  • 56 Trumpp A, Wiestler O D. Mechanisms of Disease: cancer stem cells–targeting the evil twin.  Nature clinical practice. 2008;  5 337-347
  • 57 Virchow R. Editorial.  Virchows Arch Pathol Anat Physiol Klin Med. 1855;  3 23
  • 58 White J R, Harris R A, Lee S R. et al . Genetic amplification of the transcriptional response to hypoxia as a novel means of identifying regulators of angiogenesis.  Genomics. 2004;  83 1-8
  • 59 Wicha M S, Liu S, Dontu G. Cancer stem cells: an old idea–a paradigm shift.  Cancer Res. 2006;  66 1883-1890
  • 60 Xing Z, Jordana M, Kirpalani H. et al . Cytokine expression by neutrophils and macrophages in vivo: endotoxin induces tumor necrosis factor-alpha, macrophage inflammatory protein-2, interleukin-1 beta, and interleukin-6 but not RANTES or transforming growth factor-beta 1 mRNA expression in acute lung inflammation.  Am J Respir Cell Mol Biol. 1994;  10 148-153
  • 61 Yang J, Weinberg R A. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis.  Developmental cell. 2008;  14 818-829
  • 62 Yosry A. Schistosomiasis and neoplasia.  Contrib Microbiol. 2006;  13 81-100
  • 63 Zhao B, Stavchansky S A, Bowden R A, Bowman P D. Effect of interleukin-1beta and tumor necrosis factor-alpha on gene expression in human endothelial cells.  Am J Physiol Cell Physiol. 2003;  284 C1577-1583
  • 64 Zhao Y, Glesne D, Huberman E. A human peripheral blood monocyte-derived subset acts as pluripotent stem cells.  Proc Natl Acad Sci USA. 2003;  100 2426-2431
  • 65 Zhou J, Jin Y, Gao Y. et al . Genomic-scale analysis of gene expression profiles in TNF-alpha treated human umbilical vein endothelial cells.  Inflamm Res. 2002;  51 332-341

Korrespondenzadresse

Prof. Dr. rer. nat. Thomas Dittmar

Institut für Immunologie
Universität Witten/Herdecke

Stockumer Str. 10

58448 Witten

Email: thomas.dittmar@uni-wh.de

    >