Zusammenfassung
Die Erkenntnis, dass ein Zusammenhang zwischen chronischen
Entzündungen und einem erhöhten Krebsrisiko besteht, wurde bereits
vor mehr als 150 Jahren vom Berliner Mediziner Rudolph Virchow beschrieben.
Heute wird vermutet, dass ca. 10-15 % aller humanen
Krebserkrankungen auf chronische Entzündungsprozesse
zurückzuführen sind, wobei die Ursachen sowohl auf humanpathogene
Keime (z. B. Helicobacter pylori) als auch auf anorganische/organische
Substanzen/Faktoren (Asbestfasern, Magensäure, Zigarettenrauch)
zurückgeführt werden können. Chronisch entzündetes Gewebe
stellt ein potenziell transformierendes Milieu dar, da es reich an
Wachstumsfaktoren, Zytokinen und Chemokinen ist, welche die proliferatorische
Aktivität von Zielzellen triggern, sowie an radikalischen
Sauerstoff-/Stickstoffverbindungen, die bei hoher Konzentration
Schädigungen der DNS bewirken. Durch die Faktor vermittelte bzw.
inhärente Zellteilungsaktivität der Zielzellen, kombiniert mit
mutagen wirkenden radikalischen Sauerstoff-/Stickstoffverbindungen, kann es zur
Akkumulation von chromosomalen Aberrationen und nachfolgend zur malignen
Transformation der Zielzellen kommen. Entgegen der alten Lehrmeinung, dass
Krebs seinen Ursprung in somatischen Zellen hat, ist heute bekannt, dass die
Ursprungszellen für maligne Transformationen Stammzellen
(Gewebestammzellen bzw. rekrutierte Knochenmarkstammzellen) bzw. deren
Progenitorzellen sind, aus denen die tumorinitiierenden Krebsstammzellen
hervorgehen. So konnte z. B. anhand eines etablierten Mausmodells zur
Analyse des durch H. felis induzierten Magenadenokarzinoms gezeigt werden, dass
das neoplastische Gewebe aus rekrutierten Knochenmarkstammzellen hervorgegangen
ist. Neben ihrer Rolle in der Karzinogenese sind chronische
Entzündungsreaktionen darüber hinaus maßgeblich an der
Progression von Tumorerkrankungen beteiligt. Fatal hierbei ist die symbiotische
Beziehung zwischen tumorassoziierten Makrophagen (TAM) und Tumorzellen. TAM
sind an sämtlichen Prozessen beteiligt, die eine erhöhte
Malignität der Tumorerkrankung nach sich ziehen. Hierzu zählen die
Neoangiogenese, die Proliferation sowie die Invasion und Metastasierung von
Tumorzellen wie auch die Suppression von zytotoxischen T-Zellen.
Summary
The connection between chronically inflamed tissues and an increased
risk to get cancer was already described by Rudolph Virchow nearly 150 years
ago. Today, we know that about 10 to 15 % of human cancers are
attributed to chronic infections and/or inflammatory conditions caused by
pathogens like Helicobacter pylori and/or inorganic/organic agents such as
asbestos fibers, gastric acid or smoke. Chronically inflamed tissues are
characterized by an aberrant mix of growth factors, cytokines and chemokines,
which induce cell proliferation, as well as reactive oxygen and nitrogen
species that will cause DNA damages. Thus, chronically inflamed tissues exhibit
an increased cell transformation capacity because dividing cells could
accumulate chromosomal aberrations, which ultimately can give rise to a
malignant phenotype. To date, we know that cancer has its origin in cancer stem
cells, which can originate from either adult tissue stem cells or committed
progenitor cells. In case of chronically inflamed gastric tissue it was
demonstrated that gastric cancer can originate from recruited bone
marrow-derived stem cells. Chronically inflamed conditions do also play a role
in tumor progression since tumor tissue resembles chronically inflamed tissues.
Thereby, a pivotal role has been addressed to tumor-associated macrophages
(TAMs). TAMs are stimulated by tumor cells and vice versa thus indicating a
symbiotically relationship between these cellular entities. In fact, TAMs are
participated in all mechanisms that increase tumor malignancy including
neoangiogenesis, proliferation, invasion and metastasis as well as suppression
of cytotoxic T lymphocytes.
Schlüsselwörter
Chronische Entzündungen - Chronische Infektionen - Tumorgenese
Keywords
chronic inflammation - chronic infection - tumorgenesis - cancer stem cells
Literatur
- 01
Al-Hajj M, Wicha M S, Benito-Hernandez A, Morrison S J, Clarke M F.
Prospective identification of tumorigenic breast cancer
cells.
Proc Natl Acad Sci USA.
2003;
100
3983-3988
- 02
Ando S, Abe R, Sasaki M. et al .
Bone marrow-derived cells are not the origin of the cancer
stem cells in ultraviolet-induced skin cancer.
Am J Pathol.
2009;
174
595-601
- 03
Balkwill F, Mantovani A.
Inflammation and cancer: back to Virchow?.
Lancet.
2001;
357
539-545
- 04
Bonnet D, Dick J E.
Human acute myeloid leukemia is organized as a hierarchy that
originates from a primitive hematopoietic cell.
Nat Med.
1997;
3
730-737
- 05
Chakraborty A K, Sodi S, Rachkovsky M. et al .
A spontaneous murine melanoma lung metastasis comprised of
host x tumor hybrids.
Cancer Res.
2000;
60
2512-2519
- 06
Clarke M F, Dick J E, Dirks P B. et al .
Cancer stem cells–perspectives on current status and
future directions: AACR Workshop on cancer stem cells.
Cancer Res.
2006;
66
9339-9344
- 07
Cocco P, Dosemeci M, Rice C.
Lung cancer among silica-exposed workers: the quest for truth
between chance and necessity.
La Medicina del lavoro.
2007;
98
3-17
- 08
Cohnheim J.
Ueber entzuendung und eiterung.
Path Anat Physiol Klin Med.
1867;
40
1-79
- 09
Cohnheim J.
Congenitales, quergestreiftes Muskelsarkom der Nieren.
Virchows Arch Pathol Anat.
1875;
65
64-69
- 10
Coussens L M, Werb Z.
Inflammation and cancer.
Nature.
2002;
420
860-867
- 11
Dalerba P, Dylla S J, Park I K. et al .
Phenotypic characterization of human colorectal cancer stem
cells.
Proc Natl Acad Sci USA.
2007;
104
10158-10163
- 12
David Dong Z M, Aplin A C, Nicosia R F.
Regulation of angiogenesis by macrophages, dendritic cells,
and circulating myelomonocytic cells.
Curr Pharm Des.
2009;
15
365-379
- 13
Dittmar T, Seidel J, Zaenker K S, Niggemann B.
Carcinogenesis driven by bone marrow-derived stem cells.
Contrib Microbiol.
2006;
13
156-169
- 14
Dvorak H F.
Tumors: wounds that do not heal. Similarities between tumor
stroma generation and wound healing.
N Engl J Med.
1986;
315
1650-1659
- 15
Eisenberg L M, Eisenberg C A.
Stem cell plasticity, cell fusion, and
transdifferentiation.
Birth Defects Res Part C Embryo Today.
2003;
69
209-218
- 16
El-Omar E M, Rabkin C S, Gammon M D. et al .
Increased risk of noncardia gastric cancer associated with
proinflammatory cytokine gene polymorphisms.
Gastroenterology.
2003;
124
1193-1201
- 17
Fearon E R, Vogelstein B.
A genetic model for colorectal tumorigenesis.
Cell.
1990;
61
759-767
- 18
Higashi H, Tsutsumi R, Fujita A. et al .
Biological activity of the Helicobacter pylori virulence
factor CagA is determined by variation in the tyrosine phosphorylation
sites.
Proc Natl Acad Sci USA.
2002;
99
14428-14433
- 19
Houghton J.
Bone-marrow-derived cells and cancer–an opportunity for
improved therapy.
Nature clinical practice.
2007;
4
2-3
- 20
Houghton J, Stoicov C, Nomura S. et al .
Gastric cancer originating from bone marrow-derived
cells.
Science.
2004;
306
1568-1571
- 21
Ito K, Bernardi R, Morotti A. et al .
PML targeting eradicates quiescent leukaemia-initiating
cells.
Nature.
2008;
453
1072-8
- 22
Jaiswal S, Traver D, Miyamoto T. et al .
Expression of BCR/ABL and BCL-2 in myeloid progenitors leads
to myeloid leukemias.
Proc Natl Acad Sci USA.
2003;
100
10002-10007
- 23
Jamieson C H, Ailles L E, Dylla S J. et al .
Granulocyte-macrophage progenitors as candidate leukemic stem
cells in blast-crisis CML.
N Engl J Med.
2004;
351
657-667
- 24
Jang Y Y, Collector M I, Baylin S B, Diehl A M, Sharkis S J.
Hematopoietic stem cells convert into liver cells within days
without fusion.
Nat Cell Biol.
2004;
6
532-539
- 25
Kamp D W.
Asbestos-induced lung diseases: an update.
Transl Res.
2009;
153
143-152
- 26
Kleeff J, Kusama T, Rossi D L. et al .
Detection and localization of Mip-3alpha/LARC/Exodus, a
macrophage proinflammatory chemokine, and its CCR6 receptor in human pancreatic
cancer.
Int J Cancer.
1999;
81
650-657
- 27
Kollet O, Shivtiel S, Chen Y Q. et al .
HGF, SDF-1, and MMP-9 are involved in stress-induced human
CD34+ stem cell recruitment to the liver.
J Clin Invest.
2003;
112
160-169
- 28
Krivtsov A V, Twomey D, Feng Z. et al .
Transformation from committed progenitor to leukaemia stem
cell initiated by MLL-AF9.
Nature.
2006;
442
818-822
- 29
Kuwana M, Okazaki Y, Kodama H. et al .
Human circulating CD14+ monocytes as a source of progenitors
that exhibit mesenchymal cell differentiation.
J Leukoc Biol.
2003;
74
833-845
- 30
LaBarge M A, Blau H M.
Biological progression from adult bone marrow to mononucleate
muscle stem cell to multinucleate muscle fiber in response to injury.
Cell.
2002;
111
589-601
- 31
Leung W K.
Helicobacter pylori and gastric neoplasia.
Contrib Microbiol.
2006;
13
66-80
- 32
Lewis C, Murdoch C.
Macrophage responses to hypoxia: implications for tumor
progression and anti-cancer therapies.
Am J Pathol.
2005;
167
627-635
- 33
Li C, Heidt D G, Dalerba P. et al .
Identification of pancreatic cancer stem cells.
Cancer Res.
2007;
67
1030-1037
- 34
Li F, Tiede B, Massague J, Kang Y.
Beyond tumorigenesis: cancer stem cells in metastasis.
Cell research.
2007;
17
3-14
- 35
Li R, Sonik A, Stindl R, Rasnick D, Duesberg P.
Aneuploidy versus gene mutation hypothesis of cancer: recent
study claims mutation, but is found to support aneuploidy.
Proc Natl Acad Sci USA.
2000;
97
3236-3241
- 36
Loebinger M R, Eddaoudi A, Davies D, Janes S M.
Mesenchymal stem cell delivery of TRAIL can eliminate
metastatic cancer.
Cancer Res.
2009;
69
4134-4142
- 37
Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L.
The origin and function of tumor-associated macrophages.
Immunol Today.
1992;
13
265-270
- 38
Mertens F, Johansson B, Hoglund M, Mitelman F.
Chromosomal imbalance maps of malignant solid tumors: a
cytogenetic survey of 3185 neoplasms.
Cancer Res.
1997;
57
2765-2780
- 39
Moustakas A, Pardali K, Gaal A, Heldin C H.
Mechanisms of TGF-beta signaling in regulation of cell growth
and differentiation.
Immunol Lett.
2002;
82
85-91
- 40
Nakamizo A, Marini F, Amano T. et al .
Human bone marrow-derived mesenchymal stem cells in the
treatment of gliomas.
Cancer Res.
2005;
65
3307-3318
- 41
O'Brien C A, Pollett A, Gallinger S, Dick J E.
A human colon cancer cell capable of initiating tumour growth
in immunodeficient mice.
Nature.
2007;
445
106-110
- 42
O'Sullivan C, Lewis C E, Harris A L, McGee J O.
Secretion of epidermal growth factor by macrophages
associated with breast carcinoma.
Lancet.
1993;
342
148-149
- 43
Orlic D, Kajstura J, Chimenti S. et al .
Bone marrow cells regenerate infarcted myocardium.
Nature.
2001;
410
701-705
- 44
Rachkovsky M, Sodi S, Chakraborty A. et al .
Melanoma x macrophage hybrids with enhanced metastatic
potential.
Clin Exp Metastasis.
1998;
16
299-312
- 45
Radisky D C, Levy D D, Littlepage L E. et al .
Rac1b and reactive oxygen species mediate MMP-3-induced EMT
and genomic instability.
Nature.
2005;
436
123-127
- 46
Randolph G J, Beaulieu S, Lebecque S, Steinman R M, Muller W A.
Differentiation of monocytes into dendritic cells in a model
of transendothelial trafficking.
Science.
1998;
282
480-483
- 47
Reya T, Morrison S J, Clarke M F, Weissman I L.
Stem cells, cancer, and cancer stem cells.
Nature.
2001;
414
105-111
- 48
Rizvi A Z, Swain J R, Davies P S. et al .
Bone marrow-derived cells fuse with normal and transformed
intestinal stem cells.
Proc Natl Acad Sci USA.
2006;
103
6321-6325
- 49
Schatton T, Murphy G F, Frank N Y. et al .
Identification of cells initiating human melanomas.
Nature.
2008;
451
345-349
- 50
Sell S.
Stem cell origin of cancer and differentiation therapy.
Crit Rev Oncol Hematol.
2004;
51
1-28
- 51
Singh S K, Hawkins C, Clarke I D. et al .
Identification of human brain tumour initiating cells.
Nature.
2004;
432
396-401
- 52
Smart S J, Casale T B.
TNF-alpha-induced transendothelial neutrophil migration is
IL-8 dependent.
Am J Physiol.
1994;
266
L238-L245
- 53
Studeny M, Marini P C, Dembinski J L. et al .
Mesenchymal stem cells: potential precursors for tumor stroma
and targeted-delivery vehicles for anticancer agents.
J Natl Cancer Inst.
2004;
96
1593-1603
- 54
Sun B, Nishihira J, Yoshiki T. et al .
Macrophage migration inhibitory factor promotes tumor
invasion and metastasis via the Rho-dependent pathway.
Clin Cancer Res.
2005;
11
1050-1058
- 55
Thomas-Ecker S, Lindecke A, Hatzmann W. et al .
Alteration in the gene expression pattern of primary
monocytes after adhesion to endothelial cells.
Proc Natl Acad Sci USA.
2007;
104
5539-5544
- 56
Trumpp A, Wiestler O D.
Mechanisms of Disease: cancer stem cells–targeting the
evil twin.
Nature clinical practice.
2008;
5
337-347
- 57
Virchow R.
Editorial.
Virchows Arch Pathol Anat Physiol Klin Med.
1855;
3
23
- 58
White J R, Harris R A, Lee S R. et al .
Genetic amplification of the transcriptional response to
hypoxia as a novel means of identifying regulators of angiogenesis.
Genomics.
2004;
83
1-8
- 59
Wicha M S, Liu S, Dontu G.
Cancer stem cells: an old idea–a paradigm shift.
Cancer Res.
2006;
66
1883-1890
- 60
Xing Z, Jordana M, Kirpalani H. et al .
Cytokine expression by neutrophils and macrophages in vivo:
endotoxin induces tumor necrosis factor-alpha, macrophage inflammatory
protein-2, interleukin-1 beta, and interleukin-6 but not RANTES or transforming
growth factor-beta 1 mRNA expression in acute lung inflammation.
Am J Respir Cell Mol Biol.
1994;
10
148-153
- 61
Yang J, Weinberg R A.
Epithelial-mesenchymal transition: at the crossroads of
development and tumor metastasis.
Developmental cell.
2008;
14
818-829
- 62
Yosry A.
Schistosomiasis and neoplasia.
Contrib Microbiol.
2006;
13
81-100
- 63
Zhao B, Stavchansky S A, Bowden R A, Bowman P D.
Effect of interleukin-1beta and tumor necrosis factor-alpha
on gene expression in human endothelial cells.
Am J Physiol Cell Physiol.
2003;
284
C1577-1583
- 64
Zhao Y, Glesne D, Huberman E.
A human peripheral blood monocyte-derived subset acts as
pluripotent stem cells.
Proc Natl Acad Sci USA.
2003;
100
2426-2431
- 65
Zhou J, Jin Y, Gao Y. et al .
Genomic-scale analysis of gene expression profiles in
TNF-alpha treated human umbilical vein endothelial cells.
Inflamm Res.
2002;
51
332-341
Korrespondenzadresse
Prof. Dr. rer. nat. Thomas Dittmar
Institut für Immunologie
Universität
Witten/Herdecke
Stockumer Str. 10
58448 Witten
eMail: thomas.dittmar@uni-wh.de