Int J Sports Med 2010; 31(1): 51-57
DOI: 10.1055/s-0029-1241210
Orthopedics & Biomechanics

© Georg Thieme Verlag KG Stuttgart · New York

In Vivo Assessment of Both Active and Passive Parts of the Plantarflexors Series Elastic Component Stiffness Using the Alpha Method: A Reliability Study

A. Fouré1 , A. Nordez1 , C. Cornu1
  • 1University of Nantes, UFR STAPS – Laboratoire Motricité, Interactions, Performance (EA 4334), Nantes, France
Further Information

Publication History

Publication Date:
22 December 2009 (online)

Abstract

The aim of this study was to investigate the reliability of an in vivo adaptation of the short range stiffness experiment associated with the application of a mathematical model to determine the stiffness of both torque dependent and independent components of the plantarflexors series elastic component. Fourteen subjects participated in this study. The experimental protocol consisted of quickly moving the ankle joint in dorsiflexion during constant voluntary isometric plantarflexion at 7 submaximal torque levels. Relationships between joint stiffness and torque were established and the stiffness of both torque dependent and independent components were determined using the alpha method. The day-to-day reliability was assessed for joint stiffness and stiffness of both torque dependent and independent components (ICC higher than 0.88 and CVs lower than 6.0%). This method could then be used to better understand adaptive subjacent mechanisms to assess the effects of training protocols, and the rehabilitation of neuromuscular pathologies or traumatisms.

References

  • 1 Agarwal GC, Gottlieb GL. Oscillation of the human ankle joint in response to applied sinusoidal torque on the foot.  J Physiol. 1977;  268 151-176
  • 2 Allum JH, Mauritz KH. Compensation for intrinsic muscle stiffness by short-latency reflexes in human triceps surae muscles.  J Neurophysiol. 1984;  52 797-818
  • 3 Atkinson G, Davison RC, Nevill AM. Performance characteristics of gas analysis systems: what we know and what we need to know.  Int J Sports Med. 2005;  26 (Suppl 1) S2-S10
  • 4 Atkinson G, Nevill A. Method agreement and measurement error in the physiology of exercise. In: Winter EM, Jones AM, Davison RC, Bromley PD, Mercer TH (eds). Sport and Exercise Physiology Testing Guidelines. New-York: Routledge 2006: 41-46
  • 5 Babic J, Lenarcic J. In vivo determination of triceps surae muscle-tendo complex viscoelastic properties.  Eur J Appl Physiol. 2004;  92 477-484
  • 6 Bland JM, Altman DG. Applying the right statistics: analyses of measurement studies.  Ultrasound Obstet Gynecol. 2003;  22 85-93
  • 7 Blanpied P, Smidt GL. Human plantarflexor stiffness to multiple single-stretch trials.  J Biomech. 1992;  25 29-39
  • 8 Blanpied P, Smidt GL. The difference in stiffness of the active plantarflexors between young and elderly human females.  J Gerontol. 1993;  48 M58-63
  • 9 Bosco C, Tihanyi J, Komi PV, Fekete G, Apor P. Store and recoil of elastic energy in slow and fast types of human skeletal muscles.  Acta Physiol Scand. 1982;  116 343-349
  • 10 Bouisset S, Goubel F. Integrated electromyographical activity and muscle work.  J Appl Physiol. 1973;  35 695-702
  • 11 Cook CS, McDonagh MJ. Measurement of muscle and tendon stiffness in man.  Eur J Appl Physiol. 1996;  72 380-382
  • 12 Cornu C, Goubel F. Musculo-tendinous and joint elastic characteristics during elbow flexion in children.  Clin Biomech (Bristol, Avon). 2001;  16 758-764
  • 13 Cornu C, Goubel F, Fardeau M. Muscle and joint elastic properties during elbow flexion in Duchenne muscular dystrophy.  J Physiol. 2001;  533 ((Pt 2)) 605-616
  • 14 de Zee M, Voigt M. Moment dependency of the series elastic stiffness in the human plantar flexors measured in vivo.  J Biomech. 2001;  34 1399-1406
  • 15 Ettema GJ. Contractile behaviour in skeletal muscle-tendon unit during small amplitude sine wave perturbations.  J Biomech. 1996;  29 1147-1155
  • 16 Ettema GJ, Huijing PA. Series elastic properties of rat skeletal muscle: distinction of series elastic components and some implications.  Neth J Zool. 1993;  43 306-325
  • 17 Ettema GJ, Huijing PA. Skeletal muscle stiffness in static and dynamic contractions.  J Biomech. 1994;  27 1361-1368
  • 18 Goubel F, Lensel-Corbeil G. Biomécanique, éléments de mécanique musculaire. Paris: Masson 2003
  • 19 Grieve DW, Cavanagh PR, Pheasant S. Prediction of gastrocnemius length from knee and ankle joint posture. In: Asmussen E, Jorgensen K (eds). Biomechanics VI-A, University Park Press, Baltimore 1978: 405-412
  • 20 Grosset JF, Mora I, Lambertz D, Perot C. Changes in stretch reflexes and muscle stiffness with age in prepubescent children.  J Appl Physiol. 2007;  102 2352-2360
  • 21 Grosset JF, Piscione J, Lambertz D, Perot C. Paired changes in electromechanical delay and musculo-tendinous stiffness after endurance or plyometric training.  Eur J Appl Physiol. 2009;  105 131-139
  • 22 Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures.  J Electromyogr Kinesiol. 2000;  10 361-374
  • 23 Hill AV. The heat of shortening and the dynamic constants of muscle.  Proc R Soc B. 1938;  126 136-195
  • 24 Hopkins WG. Measures of reliability in sports medicine and science.  Sports Med. 2000;  30 1-15
  • 25 Huxley AF, Simmons RM. Mechanical properties of the cross-bridges of frog striated muscle.  J Physiol (Lond). 1971;  218 59-60
  • 26 Kubo K, Morimoto M, Komuro T, Tsunoda N, Kanehisa H, Fukunaga T. Influences of tendon stiffness, joint stiffness, and electromyographic activity on jump performances using single joint.  Eur J Appl Physiol. 2007;  99 235-243
  • 27 Kubo K, Morimoto M, Komuro T, Yata H, Tsunoda N, Kanehisa H, Fukunaga T. Effects of plyometric and weight training on muscle-tendon complex and jump performance.  Med Sci Sports Exerc. 2007;  39 1801-1810
  • 28 Lambertz D, Goubel F, Kaspranski R, Perot C. Influence of long-term spaceflight on neuromechanical properties of muscles in humans.  J Appl Physiol. 2003;  94 490-498
  • 29 Latash ML, Zatsiorsky VM. Joint stiffness: Myth or reality?.  Hum Mov Sci. 1993;  12 653-692
  • 30 Maganaris CN, Paul JP. In vivo human tendon mechanical properties.  J Physiol. 1999;  521 Pt 1:  307-313
  • 31 McHugh MP, Hogan DE. Effect of knee flexion angle on active joint stiffness.  Acta Physiol Scand. 2004;  180 249-254
  • 32 Morgan DL. Separation of active and passive components of short-range stiffness of muscle.  Am J Physiol. 1977;  232 C45-49
  • 33 Morgan DL, Proske U, Warren D. Measurements of muscle stiffness and the mechanism of elastic storage of energy in hopping kangaroos.  J Physiol. 1978;  282 253-261
  • 34 Rack PM. The behaviour of a mammalian muscle during sinusoidal stretching.  J Physiol. 1966;  183 ((1)) 1-14
  • 35 Rack PM, Westbury DR. The short range stiffness of active mammalian muscle.  J Physiol. 1973;  229 16P-17P
  • 36 Rack PM, Westbury DR. The short range stiffness of active mammalian muscle and its effect on mechanical properties.  J Physiol. 1974;  240 331-350
  • 37 Shrout PE, Fleiss JL. Intraclass correlations: Uses in assessing rater reliability.  Psychol Bull. 1979;  86 420-428
  • 38 Sinkjaer T, Toft E, Andreassen S, Hornemann BC. Muscle stiffness in human ankle dorsiflexors: intrinsic and reflex components.  J Neurophysiol. 1988;  60 1110-1121
  • 39 Svantesson U, Takahashi H, Carlsson U, Danielsson A, Sunnerhagen KS. Muscle and tendon stiffness in patients with upper motor neuron lesion following a stroke.  Eur J Appl Physiol. 2000;  82 275-279

Correspondence

Mr. Alexandre Fouré

University of Nantes UFR STAPS 25 bis boulevard Guy Mollet

44322 Nantes

France

Phone: +33(0)2/51/83 72 17

Fax: +33(0)2/51/83 72 10

Email: alexandre.foure@univ-nantes.fr

    >