ZWR - Das Deutsche Zahnärzteblatt 2009; 118(7/08): 376-382
DOI: 10.1055/s-0029-1237750
Fortbildung
Parodontologie
© Georg Thieme Verlag Stuttgart · New York

Anwendungsmöglichkeiten der digitalen Volumentomografie in der Parodontaldiagnostik

Use of Cone Beam Computed Tomography in Periodontal DiagnosisM. Hagner1 , L. Ritter2 , P.–M. Jervøe–Storm1 , J. Neugebauer2 , J. E. Zöller2 , M. Frentzen1
  • 1Poliklinik für Parodontologie, Zahnerhaltung und Präventive Zahnheilkunde; Universitätsklinikum Bonn
  • 2Klinik und Poliklinik für Mund–, Kiefer– und Plastische Gesichtschirurgie und Interdisziplinäre Poliklinik für Orale Chirurgie und Implantologie; Uniklinik Köln
Further Information

Publication History

Publication Date:
07 August 2009 (online)

Die digitale Volumentomografie (DVT) hat seit ihrer Einführung 1998 weite Verbreitung in der Zahn–, Mund–, und Kieferheilkunde gefunden. In Bereichen der Oralchirurgie und Implantologie gehört sie bereits zum etablierten Standard der 3–D–Bildgebung. Vorteile dieser Technologie sind die vergleichsweise geringe Strahlenbelastung sowie die hohe Auflösung in allen 3 Raumrichtungen. Die Anwendung in der Parodontologie ist bisher auf Ausnahmeindikationen beschränkt. Der folgende Artikel stellt aktuelle Studienergebnisse in der Literatur vor und setzt sich kritisch mit diesen sowie mit klinischen Erfahrungen auseinander. Dabei zeigen sich Hinweise auf eine erfolgreiche Anwendung dieser Röntgentechnologie in der Parodontologie. Insbesondere die Klassifikation von Furkationsdefekten im Molarenbereich, das Beurteilen von intraossären Defekten sowie die Detektion von Paro–Endo–Läsionen wird durch die DVT erleichtert.

Since introduction of cone beam computed tomography (CBCT) in 1998, a widespread appliance in dentistry has occurred. This method is already well established in oral surgery and implantology. The advantage of CBCT is the significantly lower effective radiation dose compared with conventional computed tomography and undistorted three–dimensional information of the maxillofacial skeleton as well as three–dimensional images of the teeth and their surrounding tissues. In periodontology, CBCT was up till now only used for some confined indications. The present contribution presents current study results and analyses these critically in respect to clinical experience. Hereby some successful applications of CBCT were shown in periodontolgy. Especially the graduation of furcation defects in molars and the evaluation of infrabony defects as well as the detection of perio–endodontic–lesions can be facilitated by CBCT technology.

Literatur

  • 1 Baba R, Ueda K, Okabe M.. Using a flat–panel detector in high resolution cone beam CT for dental imaging.  Dentomaxillofac Radiol. 2004;  33 285-290
  • 2 Carnevale G, Pontoriero R, di Febo G.. Long–term effects of root–resective therapy in furcation–involved molars. A 10–year longitudinal study.  J Clin Periodontol. 1998;  25 209-214
  • 3 Cury PR, Araújo NS, Bowie J. et al. . The relationship between radiographic and clinical parameters in periodontal maintenance in class II furcation defects.  Braz Oral Res. 2004;  18 116-120
  • 4 Eickholz P, Hausmann E.. Accuracy of radiographic assessment of interproximal bone loss in intrabony defects using linear measurements.  Eur J Oral Sci. 2000;  108 70-73
  • 5 Eickholz P, Hörr T, Klein F. et al. . Radiographic parameters for prognosis of periodontal healing of infrabony defects: two different definitions of defect depth.  J Periodontol. 2004;  75 399-407
  • 6 Eickholz P, Kim TS, Benn DK. et al. . Validity of radiographic measurement of interproximal bone loss.  Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;  85 99-106
  • 7 Estrela C, Bueno MR, Leles CR. et al. . Accuracy of cone beam computed tomography and panoramic and periapical radiography for detection of apical periodontitis.  J Endod. 2008;  34 273-279
  • 8 Grimard BA, Hoidal MJ, Mills MP. et al. . Comparison of clinical, periapical radiograph, and cone–beam volume tomography measurement techniques for assessing bone level changes following regenerative periodontal therapy.  J Periodontol. 2009;  80 48-55
  • 9 Hamp SE, Nyman S, Lindhe J.. Periodontal treatment of multirooted teeth. Results after 5 years.  J Clin Periodontol. 1975;  2 126-135
  • 10 Jepsen S, Eberhard J, Herrera D. et al. . A systematic review of guided tissue regeneration for periodontal furcation defects. What is the effect of guided tissue regeneration compared with surgical debridement in the treatment of furcation defects?.  J Clin Periodontol. 2002;  29 103-116
  • 11 Jervøe–Storm P–M, Hagner M, Neugebauer J. et al. . Vergleich zweier digitaler Röntgentechniken zur Beurteilung des Parodontalspalts am Phantom.  Parodontologie. 2008;  3 340
  • 12 Jervøe–Storm P–M, Schüller H, Frentzen M.. High resolution computed tomography as tool in periodontal diagnosis.  J Dent Res. 1994;  73 970
  • 13 Kiliç AR, Efeoglu E, Yilmaz S. et al. . The relationship between probing bone loss and standardized radiographic analysis.  Periodontal Clin Investig. 1998;  20 25-32
  • 14 Ludlow JB, Ivanovic M.. Comparative dosimetry of dental CBCT devices and 64–slice CT for oral and maxillofacial radiology.  Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;  106 106-114
  • 15 Machtei EE, Grossi SG, Dunford R. et al. . Long–term stability of Class II furcation defects treated with barrier membranes.  J Periodontol. 1996;  67 523-527
  • 16 Matuliene G, Pjetursson BE, Salvi GE. et al. . Influence of residual pockets on progression of periodontitis and tooth loss: results after 11 years of maintenance.  J Clin Periodontol. 2008;  35 685-695
  • 17 Mengel R, Candir M, Shiratori K. et al. . Digital volume tomography in the diagnosis of periodontal defects: an in vitro study on native pig and human mandibles.  J Periodontol. 2005;  76 665-673
  • 18 Meyle J, Gonzales JR, Bödeker RH. et al. . A randomized clinical trial comparing enamel matrix derivative and membrane treatment of buccal class II furcation involvement in mandibular molars. Part II: secondary outcomes.  J Periodontol. 2004;  75 1188-1195
  • 19 Misch KA, Yi ES, Sarment DP.. Accuracy of cone beam computed tomography for periodontal defect measurements.  J Periodontol. 2006;  77 1261-1266
  • 20 Mischkowski RA, Pulsfort R, Ritter L. et al. . Geometric accuracy of a newly developed cone–beam device for maxillofacial imaging.  Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;  104 551-559
  • 21 Neugebauer J, Ritter L, Mischkowski R. et al. . Three–dimensional diagnostics, planning and implementation in implantology.  Int J Comput Dent. 2006;  9 307-319
  • 22 Ozmeric N, Kostioutchenko I, Hagler G. et al. . Cone–beam computed tomography in assessment of periodontal ligament space: in vitro study on artificial tooth model.  Clin Oral Investig. 2008;  12 233-239
  • 23 Pagliaro U, Nieri M, Rotundo R. et al. . Clinical guidelines of the Italian Society of Periodontology for the reconstructive surgical treatment of angular bony defects in periodontal patients.  J Periodontol. 2008;  79 2219-2232
  • 24 Park SY, Shin SY, Yang SM. et al. . Factors influencing the outcome of root–resection therapy in molars: a 10–year retrospective study.  J Periodontol. 2009;  80 32-40
  • 25 Patel S, Dawood A, Mannocci F. et al. . Detection of periapical bone defects in human jaws using cone beam computed tomography and intraoral radiography.  Int Endod J. 2009;  42 507-515
  • 26 Patel S.. New dimensions in endodontic imaging: Part 2. Cone beam computed tomography.  Int Endod J. 2009;  42 463-475
  • 27 Pretzl B, Kim TS, Steinbrenner H. et al. . Guided tissue regeneration with bioabsorbable barriers III 10–year results in infrabony defects.  J Clin Periodontol. 2009;  36 349-356
  • 28 Reddy MS.. Radiographic methods in the evaluation of periodontal therapy.  J Periodontol. 1992;  63 1078-1084
  • 29 Rees TD, Biggs NL, Collings CK.. Radiographic interpretation of periodontal osseous lesions.  Oral Surg Oral Med Oral Pathol. 1971;  32 141-153
  • 30 Ritter L, Neugebauer J, Dreiseidler T. et al. . 3D X–ray meets CAD/CAM dentistry: a novel procedure for virtual dental implant planning.  Int J Comput Dent. 2009;  12 29-40
  • 31 Sculean A, Nikolidakis D, Schwarz F.. Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials – biological foundation and preclinical evidence: a systematic review.  J Clin Periodontol. 2008;  35 106-116
  • 32 Stavropoulos A, Karring T.. Five–year results of guided tissue regeneration in combination with deproteinized bovine bone (Bio–Oss) in the treatment of intrabony periodontal defects: a case series report.  Clin Oral Investig. 2005;  9 271-277
  • 33 Tugnait A, Clerehugh V, Hirschmann PN.. The usefulness of radiographs in diagnosis and management of periodontal diseases: a review.  J Dent. 2000;  28 219-226
  • 34 Tyndall DA, Rathore S.. Cone–beam CT diagnostic applications: caries, periodontal bone assessment, and endodontic applications.  Dent Clin North Am. 2008;  52 825-841
  • 35 Vandenberghe B, Jacobs R, Yang J.. Diagnostic validity (or acuity) of 2D CCD versus 3D CBCT–images for assessing periodontal breakdown.  Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;  104 395-401
  • 36 Visser H.. Zeitgemäße parodontologische Röntgendiagnostik.  Dtsch Zahnaerztl Z. 1999;  54 64-72
  • 37 Walter C, Kaner D, Berndt DC. et al. . Three–dimensional imaging as a pre–operative tool in decision making for furcation surgery.  J Clin Periodontol. 2009;  36 250-257

Korrespondenzadresse

Dr. Martin Hagner

Poliklinik für Parodontologie, Zahnerhaltung und Präventive Zahnheilkunde

Welschnonnenstrasse 17

53111 Bonn

Email: martin.hagner@gmx.net

    >