RSS-Feed abonnieren
DOI: 10.1055/s-0029-1225360
© Georg Thieme Verlag KG Stuttgart · New York
Regulation of Glucose-6-Phosphatase Gene Expression by Insulin and Metformin
Publikationsverlauf
received 13.03.2009
accepted 27.05.2009
Publikationsdatum:
03. Juli 2009 (online)

Abstract
The biguanide derivative metformin is a potent anti-diabetic drug widely used in the treatment of type 2 diabetes mellitus. Its major effect on glucose metabolism consists in the inhibition of hepatic glucose production. Since the mechanisms of metformin action are only partially understood at the molecular level, we studied the regulation of the gene promoter activity of glucose-6-phosphatase (G6Pase), the central hepatic gluconeogenic enzyme, by this drug. We have found that both metformin and insulin inhibit the basal and dexamethasone/cAMP-stimulated G6Pase promoter activity in hepatoma cells. Since one of the pharmacological targets of metformin is AMP-activated protein kinase (AMPK) and activation of AMPK is known to inhibit hepatic glucose production by the suppression of G6Pase gene transcription, we studied the effect of AMPK in this context. Under nonstimulated conditions, the inhibitory effect of both insulin and metformin was partially counteracted to a similar extent by treatment with compound C, a specific inhibitor of AMPK. In contrast, under conditions of stimulation with dexamethasone and cAMP, treatment with compound C reversed the inhibitory effect of metformin on G6Pase promoter activity to a similar extent as compared to nonstimulated conditions, whereas the effect of insulin was almost resistant to treatment with the AMPK-antagonist. These data indicate a differential AMPK-dependent regulation of G6Pase gene expression by insulin and metformin under basal and dexamethasone/cAMP-stimulated conditions.
Key words
hepatic glucose production - gluconeogenesis - diabetes mellitus type 2
References
- 1
Schwarz PE, Reimann M, Li J, Bergmann A, Licinio J, Wong ML, Bornstein SR.
The Metabolic Syndrome – a global challenge for prevention.
Horm Metab Res.
2007;
39
777-780
MissingFormLabel
- 2
Schwarz PE, Bornstein SR, Hanefeld M.
The future of the metabolic syndrome.
Horm Metab Res.
2009;
41
73-74
MissingFormLabel
- 3
Reimann M, Bonifacio E, Solimena M, Schwarz PE, Ludwig B, Hanefeld M, Bornstein SR.
An update on preventive and regenerative therapies in diabetes mellitus.
Pharmacol Ther.
2009;
121
317-331
MissingFormLabel
- 4
Schinner S, Scherbaum WA, Bornstein SR, Barthel A.
Molecular mechanisms of insulin resistance.
Diabet Med.
2005;
22
674-682
MissingFormLabel
- 5
Barthel A, Schmoll D.
Novel concepts in insulin regulation of hepatic gluconeogenesis.
Am J Physiol Endocrinol Metab.
2003;
285
E685-E692
MissingFormLabel
- 6
Barthel A, Schmoll D, Unterman TG.
FoxO proteins in insulin action and metabolism. Trends in endocrinology and metabolism.
TEM.
2005;
16
183-189
MissingFormLabel
- 7
Nordlie RC, Foster JD, Lange AJ.
Regulation of glucose production by the liver.
Annu Rev Nutr.
1999;
19
379-406
MissingFormLabel
- 8
Schmoll D, Walker KS, Alessi DR, Grempler R, Burchell A, Guo S, Walther R, Unterman TG.
Regulation of glucose-6-phosphatase gene expression by protein kinase Balpha and the
forkhead transcription factor FKHR. Evidence for insulin response unit-dependent and
-independent effects of insulin on promoter activity.
J Biol Chem.
2000;
275
36324-36333
MissingFormLabel
- 9
Barthel A, Herzig S, Muller HW, Harborth J, Bornstein SR.
RNA interference-based strategies for metabolic syndrome treatment.
Horm Metab Res.
2005;
37
59-62
MissingFormLabel
- 10
Magalhaes FO, Gouveia LM, Torquato MT, Paccola GM, Piccinato CE, Foss MC.
Metformin increases blood flow and forearm glucose uptake in a group of non-obese
type 2 diabetes patients.
Horm Metab Res.
2006;
38
513-517
MissingFormLabel
- 11
Ou HY, Cheng JT, Yu EH, Wu TJ.
Metformin increases insulin sensitivity and plasma beta-endorphin in human subjects.
Horm Metab Res.
2006;
38
106-111
MissingFormLabel
- 12
Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, Inzucchi SE, Schumann WC, Petersen KF, Landau BR, Shulman GI.
Mechanism by which metformin reduces glucose production in type 2 diabetes.
Diabetes.
2000;
49
2063-2069
MissingFormLabel
- 13
Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE.
Metabolic effects of metformin in non-insulin-dependent diabetes mellitus.
N Engl J Med.
1995;
333
550-554
MissingFormLabel
- 14
Morioka K, Nakatani K, Matsumoto K, Urakawa H, Kitagawa N, Katsuki A, Hori Y, Gabazza EC, Yano Y, Nishioka J, Nobori T, Sumida Y, Adachi Y.
Metformin-induced suppression of glucose-6-phosphatase expression is independent of
insulin signaling in rat hepatoma cells.
Int J Mol Med.
2005;
15
449-452
MissingFormLabel
- 15
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE.
Role of AMP-activated protein kinase in mechanism of metformin action.
J Clin Invest.
2001;
108
1167-1174
MissingFormLabel
- 16
Towler MC, Hardie DG.
AMP-activated protein kinase in metabolic control and insulin signaling.
Circ Res.
2007;
100
328-341
MissingFormLabel
- 17
Barthel A, Schmoll D, Kruger KD, Roth RA, Joost HG.
Regulation of the forkhead transcription factor FKHR (FOXO1a) by glucose starvation
and AICAR, an activator of AMP-activated protein kinase.
Endocrinology.
2002;
143
3183-3186
MissingFormLabel
- 18
Lochhead PA, Salt IP, Walker KS, Hardie DG, Sutherland C.
5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression
of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase.
Diabetes.
2000;
49
896-903
MissingFormLabel
- 19
Scheen AJ.
Clinical pharmacokinetics of metformin.
Clin Pharmacokinet.
1996;
30
359-371
MissingFormLabel
- 20
Kefas BA, Cai Y, Kerckhofs K, Ling Z, Martens G, Heimberg H, Pipeleers D, Van de Casteele M.
Metformin-induced stimulation of AMP-activated protein kinase in beta-cells impairs
their glucose responsiveness and can lead to apoptosis.
Biochem Pharmacol.
2004;
68
409-416
MissingFormLabel
- 21
Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, Kahn CR.
Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive
hepatic dysfunction.
Mol Cell.
2000;
6
87-97
MissingFormLabel
- 22
Lamers WH, Hanson RW, Meisner HM.
cAMP stimulates transcription of the gene for cytosolic phosphoenolpyruvate carboxykinase
in rat liver nuclei.
Proc Natl Acad Sci USA.
1982;
79
5137-5141
MissingFormLabel
- 23
Lange AJ, Argaud D, el-Maghrabi MR, Pan W, Maitra SR, Pilkis SJ.
Isolation of a cDNA for the catalytic subunit of rat liver glucose-6-phosphatase:
regulation of gene expression in FAO hepatoma cells by insulin, dexamethasone and
cAMP.
Biochem Biophys Res Commun.
1994;
201
302-309
MissingFormLabel
- 24
Schmoll D, Wasner C, Hinds CJ, Allan BB, Walther R, Burchell A.
Identification of a cAMP response element within the glucose- 6-phosphatase hydrolytic
subunit gene promoter which is involved in the transcriptional regulation by cAMP
and glucocorticoids in H4IIE hepatoma cells.
Biochem J.
1999;
338
((Pt 2))
457-463
MissingFormLabel
- 25
Ellis L, Clauser E, Morgan DO, Edery M, Roth RA, Rutter WJ.
Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated
kinase activity and uptake of 2-deoxyglucose.
Cell.
1986;
45
721-732
MissingFormLabel
- 26
Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA.
Mechanism of activation of protein kinase B by insulin and IGF-1.
EMBO J.
1996;
15
6541-6551
MissingFormLabel
- 27
Winder WW, Hardie DG.
AMP-activated protein kinase, a metabolic master switch: possible roles in type 2
diabetes.
Am J Physiol.
1999;
277
E1-E10
MissingFormLabel
- 28
Stein SC, Woods A, Jones NA, Davison MD, Carling D.
The regulation of AMP-activated protein kinase by phosphorylation.
Biochem J.
2000;
345
((Pt 3))
437-443
MissingFormLabel
- 29
Hundal RS, Inzucchi SE.
Metformin: new understandings, new uses.
Drugs.
2003;
63
1879-1894
MissingFormLabel
- 30
Grempler R, Gunther S, Steffensen KR, Nilsson M, Barthel A, Schmoll D, Walther R.
Evidence for an indirect transcriptional regulation of glucose-6-phosphatase gene
expression by liver X receptors.
Biochem Biophys Res Commun.
2005;
338
981-986
MissingFormLabel
- 31
Grempler R, Kienitz A, Werner T, Meyer M, Barthel A, Ailett F, Sutherland C, Walther R, Schmoll D.
Tumour necrosis factor alpha decreases glucose-6-phosphatase gene expression by activation
of nuclear factor kappaB.
Biochem J.
2004;
382
471-479
MissingFormLabel
1 Equal contribution of both authors.
Correspondence
Dr. A. Barthel
Endokrinologikum Ruhr
Alter Markt 4
44866 Bochum
Germany
Telefon: +49/2327/964 20
Fax: +49/2327/96 42 99
eMail: Andreas.Barthel@endokrinologikum.com