RSS-Feed abonnieren
DOI: 10.1055/s-0029-1220913
© Georg Thieme Verlag KG Stuttgart · New York
TSH Receptor – Autoantibody Interactions
Publikationsverlauf
received 03.03.2009
accepted 22.04.2009
Publikationsdatum:
20. Mai 2009 (online)

Abstract
TSH receptor (TSHR) autoantibodies (TRAbs) activate the TSHR cyclic AMP cascade (stimulating TRAbs) or act as TSHR antagonist (blocking TRAbs), and both types inhibit TSH binding to the TSHR. Isolation of human monoclonal TSHR autoantibodies (stimulating M22 and blocking 5C9) has been a key milestone in studies of the TSHR and TSHR autoimmunity. Comparison of M22 and TSH interactions with the TSHR at the atomic level reveal that M22 heavy and light chains mimic TSH α and β chains, respectively, in the way they bind to the receptor, but the evolutionary forces which have caused this close molecular mimicry are as yet completely unknown. More recently two more human monoclonal antibodies to the TSHR (K1-18 with stimulating and K1-70 with blocking activities) have been isolated from a single blood sample collected from a patient with hypothyroidism who previously presented with hyperthyroidism. K1-18 and K1-70 were derived from different lymphocytes as shown by V region genes analysis. This provides, for the first time, clear proof that a patient can produce both blocking and stimulating TRAbs at the same time. Although it has been postulated that stimulating and blocking TRAbs bind to different regions on the TSHR, our studies showed that antibodies of both types bind well to the TSHR containing only N-terminal amino acids 22–260. Whether TRAbs make contact with other parts of the TSHR in order to produce their biological effects (stimulation or blocking) remains to be elucidated.
Key words
Graves’ disease - TSH - TSH receptor antibodies - autoimmunity
References
- 1
Adams DD.
Pathogenesis of the hyperthyroidism of Graves’ disease.
Br Med J.
1965;
1
1015-1019
MissingFormLabel
- 2
Rees Smith B, McLachlan SM, Furmaniak J.
Autoantibodies to the thyrotropin receptor.
Endocr Rev.
1988;
9
106-121
MissingFormLabel
- 3
Rees Smith B, Sanders J, Furmaniak J.
TSH receptor antibodies.
Thyroid.
2007;
17
923-938
MissingFormLabel
- 4
Rapoport B, Chazenbalk GD, Jaume JC, McLachlan SM.
The thyrotropin (TSH) receptor: interaction with TSH and autoantibodies.
Endocr Rev.
1998;
19
673-716
MissingFormLabel
- 5
Sanders J, Chirgadze DY, Sanders P, Baker S, Sullivan A, Bhardwaja A, Bolton J, Reeve M, Nakatake N, Evans M, Richards T, Powell M, Núñez Miguel R, Blundell TL, Furmaniak J, Rees Smith B.
Crystal structure of the TSH receptor in complex with a thyroid-stimulating autoantibody.
Thyroid.
2007;
17
395-410
MissingFormLabel
- 6
Ando T, Latif R, Daniel S, Eguchi K, Davies TF.
Dissecting linear and conformational epitopes on the native thyrotropin receptor.
Endocrinology.
2004;
145
5185-5193
MissingFormLabel
- 7
Costagliola S, Bonomi M, Morgenthaler NG, Van Durme J, Panneels V, Refetoff S, Vassart G.
Delineation of the discontinuous-conformational epitope of a monoclonal antibody displaying
full in vitro and in vivo thyrotropin activity.
Mol Endocrinol.
2004;
18
3020-3034
MissingFormLabel
- 8
Flynn JC, Gilbert JA, Meroueh C, Snower DP, David CS, Kong YM, Banga JP.
Chronic exposure in vivo to thyrotropin receptor stimulating monoclonal antibodies
sustains high thyroxine levels and thyroid hyperplasia in thyroid autoimmunity-prone
HLA-DRB1*0301 transgenic mice.
Immunology.
2007;
122
261-267
MissingFormLabel
- 9
Fox KM, Dias JA, van Roey P.
Three-dimensional structure of human follicle-stimulating hormone.
Mol Endocrinol.
2001;
15
378-389
MissingFormLabel
- 10
Fan QR, Hendrickson WA.
Structure of human follicle-stimulating hormone in complex with its receptor.
Nature.
2005;
433
269-277
MissingFormLabel
- 11
Núñez Miguel R, Sanders J, Chirgadze DY, Blundell TL, Furmaniak J, Rees Smith B.
FSH and TSH binding to their respective receptors: similarities, differences and implication
for glycoprotein hormone specificity.
J Mol Endocrinol.
2008;
41
145-164
MissingFormLabel
- 12
Núñez Miguel R, Sanders J, Chirgadze DY, Furmaniak J, Rees Smith B.
Thyroid stimulating autoantibody M22 mimics TSH binding to the TSH receptor leucine
rich domain: a comparative structural study of protein-protein interactions.
J Mol Endocrinol.
2009;
42
381-395
MissingFormLabel
- 13
Nakatake N, Sanders J, Richards T, Burne P, Barrett C, Pra CD, Presotto F, Betterle C, Furmaniak J, Rees Smith B.
Estimation of serum TSH receptor autoantibody concentration and affinity.
Thyroid.
2006;
16
1077-1084
MissingFormLabel
- 14
Sanders J, Bolton J, Sanders P, Jeffreys J, Nakatake N, Richards T, Evans M, Kiddie A, Summerhayes S, Roberts E, Núñez Miguel R, Furmaniak J, Rees Smith B.
Effects of TSH receptor mutations on binding and biological activity of monoclonal
antibodies and TSH.
Thyroid.
2006;
16
1195-1206
MissingFormLabel
- 15
Sanders J, Evans M, Premawardhana LDKE, Depraetere H, Jeffreys J, Richards T, Furmaniak J, Rees Smith B.
Human monoclonal thyroid stimulating autoantibody.
Lancet.
2003;
362
126-128
MissingFormLabel
- 16
Sanders J, Jeffreys J, Depraetere H, Evans M, Richards T, Kiddie A, Brereton K, Premawardhana LD, Chirgadze DY, Núñez Miguel R, Blundell TL, Furmaniak J, Rees Smith B.
Characteristics of a human monoclonal autoantibody to the thyrotropin receptor: sequence
structure and function.
Thyroid.
2004;
14
560-570
MissingFormLabel
- 17
Sanders J, Evans M, Betterle C, Sanders P, Bhardwaja A, Young S, Roberts E, Wilmot J, Richards T, Kiddie A, Small K, Platt H, Summerhayes S, Harris R, Reeve M, Coco G, Zanchetta R, Chen S, Furmaniak J, Rees Smith B.
A human monoclonal autoantibody to the thyrotropin receptor with thyroid-stimulating
blocking activity.
Thyroid.
2008;
18
735-746
MissingFormLabel
- 18
Jeffreys J, Depraetere H, Sanders J, Oda Y, Evans M, Kiddie A, Richards T, Furmaniak J, Rees Smith B.
Characterization of the thyrotropin binding pocket.
Thyroid.
2002;
12
1051-1061
MissingFormLabel
- 19
Flanagan JG, Cheng H-J.
Alkaline phosphatase fusion proteins for molecular characterization and cloning of
receptors and their ligands.
Meth Enzymol.
2000;
327
198-210
MissingFormLabel
- 20
Brooking H, Ananieva-Jordanova R, Arnold C, Amoroso M, Powell M, Betterle C, Zanchetta R, Furmaniak J, Rees Smith B.
A sensitive non-isotopic assay for GAD65 autoantibodies.
Clin Chim Acta.
2003;
331
55-59
MissingFormLabel
- 21
Chen S, Willis J, Maclean C, Ananieva-Jordanova R, Amoroso MA, Brooking H, Powell M, Collins A, Bennett S, Mitchell S, Burne P, Furmaniak J, Rees Smith B.
Sensitive non-isotopic assays for autoantibodies to IA-2 and to a combination of both
IA-2 and GAD65.
Clin Chim Acta.
2005;
357
74-83
MissingFormLabel
- 22
Loos U, Franz C, Minich WB, Büsselmann I.
Direct assay of TSH receptor autoantibodies causing Graves’ disease correlates with
the clinical diagnosis closer than assays based on TSH displacement.
Horm Res.
2007;
68
((Suppl 3))
21-91
MissingFormLabel
- 23
Aalberse RC, Schuurman J.
IgG4 breaking the rules.
Immunology.
2002;
105
9-19
MissingFormLabel
- 24
van der Neut Kolfschoten M, Schuurman J, Losen M, Bleeker WK, Martínez-Martínez P, Vermeulen E, den Bleker TH, Wiegman L, Vink T, Aarden LA, De Baets MH, van de Winkel JGJ, Aalberse RC, Parren PWHI.
Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange.
Science.
2007;
317
1554-1557
MissingFormLabel
- 25
Weetman AP, Byfield PGH, Black C, Reimer B.
IgG heavy chain subclass restriction of thyrotropin binding inhibitory immunoglobulins
in Graves’ disease.
Eur J Clin Invest.
1990;
20
406-410
MissingFormLabel
- 26
Kraiem Z, Cho BY, Sadeh O, Shong MH, Pickerill P, Weetman AP.
The IgG subclass distribution of TSH receptor blocking antibodies in primary hypothyroidism.
Clin Endocrinol.
1992;
37
135-140
MissingFormLabel
- 27
Minich WB, Loos U.
Detection of functionally different types of pathological autoantibodies against thyrotropin
receptor in Graves’ patients sera by luminescent immunoprecipitation analysis.
Exp Clin Endocrinol Diabetes.
2000;
108
110-119
MissingFormLabel
- 28
Minich WB, Lenzner C, Bergmann A, Morgenthaler NG.
A coated tube assay for the detection of blocking thyrotropin receptor autoantibodies.
J Clin Endocrinol Metab.
2004;
89
352-356
MissingFormLabel
- 29
Chazenbalk GD, Jaume JC, McLachlan SM, Rapoport B.
Engineering the human thyrotropin receptor ectodomain from a non-secreted form to
a secreted, highly immunoreactive glycoprotein that neutralizes autoantibodies in
Graves’ patients’ sera.
J Biol Chem.
1997;
272
18959-18965
MissingFormLabel
- 30
Chazenbalk GD, Wang Y, Guo J, Hutchison JS, Segal D, Jaume JC, McLachlan SM, Rapoport B.
A mouse monoclonal antibody to a thyrotropin receptor ectodomain variant provides
insight into the exquisite antigenic conformational requirement, epitopes and in vivo
concentration of human autoantibodies.
J Clin Endocrinol Metab.
1999;
84
702-710
MissingFormLabel
- 31
Chazenbalk GD, McLachlan SM, Pichurin P, Yan XM, Rapoport B.
A prion-like shift between two conformational forms of a recombinant thyrotropin receptor
A-subunit module: purification and stabilization using chemical chaperones of the
form reactive with Graves’ autoantibodies.
J Clin Endocrinol Metab.
2001;
86
1287-1293
MissingFormLabel
- 32
Chazenbalk GD, Pichurin P, Chen CR, Latrofa F, Johnstone AP, McLachlan SM, Rapoport B.
Thyroid-stimulating autoantibodies in Graves’ disease preferentially recognize the
free A subunit, not the thyrotropin holoreceptor.
J Clin Invest.
2002;
110
209-217
MissingFormLabel
- 33
Schwarz-Lauer L, Chazenbalk GD, McLachlan SM, Ochi Y, Nagayama Y, Rapoport B.
Evidence for a simplified view of autoantibody interactions with the thyrotropin receptor.
Thyroid.
2002;
12
115-120
MissingFormLabel
- 34
Da Costa CR, Johnstone AP.
Production of the thyrotropin receptor extracellular domain as a glycosylphosphatidylinositol
anchored membrane protein and its interaction with thyrotropin and autoantibodies.
J Biol Chem.
1998;
273
11874-11880
MissingFormLabel
- 35
Cornelis S, Uttenweiler-Joseph S, Panneels V, Vassart G, Costagliola S.
Purification and characterization of a soluble bioactive amino-terminal extracellular
domain of the human thyrotropin receptor.
Biochemistry.
1998;
40
9860-9869
MissingFormLabel
- 36
Osuga Y, Liang SG, Dallas JS, Wang C, Hsueh AJ.
Soluble ecto-domain mutant of thyrotropin (TSH) receptor incapable of binding TSH
neutralizes the action of thyroid-stimulating antibodies from Graves’ patients.
Endocrinology.
1998;
139
671-676
MissingFormLabel
- 37
Szkudlinski WM, Teh NG, Grossmann M, Tropea JE, Weintraub BD.
Engineering human glycoprotein hormone superactive analogues.
Nature Biotechnol.
1996;
14
1257-1263
MissingFormLabel
- 38
Mueller S, Kleinau G, Jaeschke H, Paschke R, Krause G.
Extended hormone binding site of the human TSHR: distinctive acidic residues in the
hinge region are involved in bovine TSH binding and receptor activation.
J Biol Chem.
2008;
283
18048-18055
MissingFormLabel
- 39
Mizutori U, Chen C-R, McLachlan SM, Rapoport B.
The thyrotropin receptor hinge region is not simply a scaffold for the leucine-rich
domain but contributes to ligand binding and signal transduction.
Mol Endocrinol.
2008;
22
1171-1182
MissingFormLabel
- 40
Costagliola S, Panneels V, Bonomi M, Koch J, Many MC, Smits G, Vassart G.
Tyrosine sulfation is required for agonist recognition by glycoprotein hormone receptors.
EMBO J.
2002;
21
504-513
MissingFormLabel
- 41
Gallivan JP, Dougherty DA.
Cation-π interactions in structural biology.
Proc Natl Acad Sci USA.
1999;
96
9459-9464
MissingFormLabel
Correspondence
Dr. B. Rees Smith
FIRS Laboratories
RSR Ltd
Parc Ty Glas
Llanishen
Cardiff CF14 5DU
UK
Telefon: +44/29/2076 55 50
Fax: +44/29/2076 45 75
eMail: firs@rsrltd.eclipse.co.uk