Synlett 2010(2): 271-275  
DOI: 10.1055/s-0029-1218552
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Easy Access to Configurationally Controlled C-Glycofuranoside-Based Building Blocks by Means of Formyl C-Glycofuranosides

Yolanda Vera-Ayosoa, Pastora Borracheroa, Francisca Cabrera-Escribano*a, Manuel Gómez-Guilléna, Joaquim Canerb, Jaume Farrásb
a Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado de Correos No. 1203, 41071 Sevilla, Spain
Fax: +34(95)4624960; e-Mail: fcabrera@us.es ;
b Departamento de Química Orgánica, Universidad de Barcelona, Av. Diagonal 647, 08028 Barcelona, Spain
Further Information

Publication History

Received 24 September 2009
Publication Date:
09 December 2009 (online)

Abstract

A general approach to enantiopure C-glycofuranoside-based hybrid α/β-amino acids and nitrones, among other valuable building blocks, has been established via formyl C-glycofuranosides, easily available from hexose-derived equatorial-2-OH-glycopyranosides by DAST-promoted ring contraction.

    References and Notes

  • 1a Taylor EA. Clinch K. Kelly PM. Li L. Evans GB. Tyler PC. Schramn VL. J. Am. Chem. Soc.  2007,  129:  6984 
  • 1b Pellisier H. Tetrahedron  2005,  61:  2947 
  • 1c Schmieg J. Yang G. Franck RW. Tsuji MO.
    J. Exp. Med.  2003,  198:  1631 
  • 1d Levy W. Chang D. The Chemistry of C-Glycosyl Compound   Elsevier; Cambridge: 1995. 
  • 2a Kaliappan KP. Subrahmanyam AV. Org. Lett.  2007,  9:  1121 
  • 2b Moreno B. Quehen C. Rose-Helene M. Leclerc E. Quirion J.-C. Org. Lett.  2007,  9:  2477 
  • 2c Taillefumier C. Chapleur Y. Chem. Rev.  2004,  104:  263 
  • 3a Vera-Ayoso Y. Borrachero P. Cabrera-Escribano F. Carmona AT. Gómez-Guillén M. Tetrahedron: Asymmetry  2005,  16:  889 
  • 3b Vera-Ayoso Y. Borrachero P. Cabrera-Escribano F. Carmona AT. Gómez-Guillén M. Tetrahedron: Asymmetry  2004,  15:  429 
  • 3c Borrachero P. Cabrera-Escribano F. Carmona AT. Gómez-Guillén M. Tetrahedron: Asymmetry  2000,  11:  2927 
  • 3d Borrachero P. Cabrera-Escribano F. Gómez-Guillén M. Madrid-Díaz F. Tetrahedron Lett.  1997,  38:  1231 
  • 4 One of most important principles of Green Chemistry is that of atom economy. Rearrangements are considered as atom economic reactions: Anastas Y. Warner JC. Green Chemistry: Theory and Practice   Oxford University Press; New York: 1998. 
  • 5 Kirchning A. Kujat C. Luiken S. Schaumann E. Eur. J. Org. Chem.  2007,  2387 
  • 6 Vera-Ayoso Y. Borrachero P. Cabrera-Escribano F. Gómez-Guillén M. Vogel P. Synlett  2006,  45 
  • 7a Aye Y. Davies SG. Garner C. Roberts PM. Smith AD. Thomson JE. Org. Biomol. Chem.  2008,  6:  2195 
  • 7b Benedek G. Palkó M. Wéber E. Martinek TA. Forró E. Fülöp F. Eur. J. Org. Chem.  2008,  3724 
  • 7c Forró E. Fülöp F. Chem. Eur. J.  2007,  13:  6397 
  • 8a Sharma GVM. Babu BS. Chatterjee D. Ramakrishna KVS. Kunwar AC. Schramm P. Hofmann H.-H. J. Org. Chem.  2009,  74:  6703 
  • 8b Choi SH. Guzei IA. Spencer LC. Gellman SH. J. Am. Chem. Soc.  2008,  130:  6544 
  • 8c Prabhakaran P. Kale SS. Puranik VG. Rajamohanan PR. Chetina O. Howard JAK. Hofmann H.-J. Sanjayan GJ. J. Am. Chem. Soc.  2008,  130:  17743 
  • 8d Schmitt MA. Choi SH. Guzei IA. Gellman SH. J. Am. Chem. Soc.  2006,  128:  4538 
  • 9a Seebach D. Gardiner J. Acc. Chem. Res.  2008,  41:  1366 
  • 9b Sadowsky JD. Schmitt MA. Lee HS. Umezawa N. Wang S. Tomita Y. Gellman SH. J. Am. Chem. Soc.  2005,  127:  11966 
  • 10 Fülöp F. Martinek TA. Tóth GK. Chem. Soc. Rev.  2006,  35:  323 
  • 11a Stanley LM. Sibi MP. Chem. Rev.  2008,  108:  2887 
  • 11b Ratner DM. Adams EW. Disney MD. Seeberger PH. ChemBioChem  2004,  5:  1375 
  • 12 Baer HH. Gan Y. Carbohydr. Res.  1991,  210:  233 
  • The calculations were performed at the University of Barcelona. Lowest-energy conformer were calculated by performing Monte Carlo conformational searches (50000 steps) with MacroModel 8.5 (MM2*, CHCl3, GB/SA):
  • 14a Mohamadi F. Richards NGJ. Guida WC. Liskamp R. Lipton M. Caufied C. Chang G. Hendrickson T. Still WC. J. Comp. Chem.  1990,  11:  440 
  • 14b Still WC. Tempczyk A. Hawley RC. Hendrickson T. J. Am. Chem. Soc.  1990,  112:  6127 
  • 15 Borrachero P. Cabrera F. Diánez MJ. Estrada MD. Gómez-Guillén M. López-Castro A. Moreno J. Paz J. Pérez-Garrido S. Tetrahedron: Asymmetry  1999,  10:  77 
  • 17 Torres-Sánchez MI. Borrachero P. Cabrera-Escribano F. Gómez-Guillén M. Angulo-Álvarez M. Sánchez E. Favre S. Vogel P. Tetrahedron  2007,  18:  1089 
13

Preparation and More Relevant Data of Compound 10
A soln of 9 (105 mg, 0.340 mmol) in dry THF (4.8 mL) containing 3 Å MS was treated with NaCNBH3 (273 mg, 4.35 mmol). The mixture was stirred for 15 min, and then Et2O-HCl (3.5%, 6 mL) was added. After 5 min, the reaction was diluted with H2O (20 mL) and CH2Cl2 (20 mL). After separation, the organic layer was successively washed with sat. aq NaHCO3 (50 mL) and brine (50 mL), dried (Na2SO4), and concentrated. Column chromatography (hexane-EtOAc, 3:1) gave pure 10 (64 mg, 64%).
Analytical Data
[α]D ²4 +16.2 (c 0.63, CH2Cl2). IR: νmax = 2108 (N3) cm. ¹H NMR (500 MHz, acetone-d 6): δ = 7.36-7.26 (m, 5 H, Ph), 4.75 (s br, 1 H, OHC4), 4.55 (s, 2 H, CH2Ph), 4.55-4.53 (m, 1 H, H-4), 4.17 (ddd, 1 H, J 1,2 = J 1 ,2 = 5.7 Hz, J 2,3 = 3.7 Hz, H-2), 4.14 (dd, 1 H, J 3,4 = 4.2 Hz, H-3), 3.93 (ddd, 1 H, J 4,5 = 7.5 Hz, J 5,6  = 4.5 Hz, J 5,6 = 3.0 Hz, H-5), 3.65 (dd, 1 H, J 6,6  = 11.0 Hz, H-6), 3.58 (dd, 1 H, H-6′), 3.56 (dd, 1 H, J 1,1  = 10.0 Hz, H-1), 3.43 (dd, 1 H, H-1′), 3.31 (s, 3H, OCH3) ppm. HRMS (CI): m/z calcd for C14H19N3O4 + H: 294.1454; found: 294.1462.

16

The ratio of 24/25 was calculated by the ¹H NMR (CDCl3) of the mixture, in particular from the signals of H-4 of both stereoisomers: δ = 5.65 ppm (dd, 1 H, J 4,5 = 7.8 Hz, J 3,4 = 4.5 Hz, H-4) observed for the major stereoisomer 24, and that observed at δ = 4.80 ppm (dd, 1 H, J 4,5 = 7.2 Hz, J 3,4 = 4.8 Hz, H-4) for 25.

18

More Relevant Data Compound 16: [α]D ²¹ +37 (c 0.77, acetone). ¹H NMR (500 MHz, acetone-d 6): δ = 7.36-7.33 (m, 5 H, Ph), 7.09 (d, 1 H, J NH,3 = 7.0 Hz, CCONH), 6.43 (s br, 1 H, OCONH), 4.58-4.53 (m, 1 H, H-3), 4.57 and 4.58 (each 2 d, 1 H, J H,H  = 12.9 Hz, CH2Ph), 4.45 (d, 1 H, J OH,4 = 8.0 Hz, OHC4), 4.31 (ddd, 1 H, J 2,3 = 8.0 Hz, J 1 ,2 = 4.5 Hz, J 1,2 = 3.0 Hz, H-2), 4.17-4.14 (m, 1 H, H-4), 4.01 (ddd, 1 H, J 5,6 = J 5,6  = 4.0 Hz, J 4,5 = 3.0 Hz, H-5), 3.77 (dd, 1 H, J gem = 16.5 Hz, J NH,CH2a = 6.0 Hz, NHCH a 2), 3.72 (dd, 1 H, J NH,CH2b = 6.0 Hz, NHCH b 2), 3.55 (dd, 1 H, J 6,6  = 10.5 Hz, H-6), 3.52 (dd, 1 H, H-6′), 3.50 (dd, 1 H, J 1,1  = 10.5 Hz, H-1), 3.40 (dd, 1 H, H-1′), 3.35 (s, 3 H, OCH3), 1.43 [s, 9 H, C(CH3)3] ppm. ¹³C NMR (125.7 MHz, acetone-d 6): δ = 170.5, 157.0, 139.6-128.2, 85.2, 79.6, 78.9, 73.8, 73.1, 72.9, 72.0, 59.3, 53.9, 44.9, 28.6 ppm. HRMS (CI): m/z calcd for C21H32N2O7 + H: 425.2288; found: 425.2291. Anal. Calcd for C21H32N2O7: C, 59.42; H, 7.60; N, 6.60. Found: C, 59.12; H, 7.45; N, 6.72.
Compound 20: [α]D ²4 +52 (c 0.66, CH2Cl2). IR: νmax = 2114 (N3) cm. ¹H NMR (500 MHz, CDCl3): δ = 7.07 (dd, 1 H, J NH,CH2a = 5.0 Hz, NH), 5.22 (dd, 1 H, J 4,5 = 8.5 Hz, J 3,4 = 4.5 Hz, H-4), 4.68 (dd, 1 H, J 2,3 = 4.5 Hz, H-3), 4.62 (d, 1 H, H-2), 4.40-4.36 (m, 1 H, H-5), 4.36 (dd, 1 H, J 6,6  = 12.5 Hz, J 5,6 = 2.5 Hz, H-6), 4.23 (q, 2 H, J = 7.0, C2H5), 4.13 (dd, 1 H, J 5,6  = 4.0 Hz, H-6′), 4.11 (dd, 1 H, J gem = 18.0 Hz, NHCH a 2), 4.07 (dd, 1 H, NHCH b 2), 2.16, 2.09 (2 s, each 3 H, COCH3), 1.29 (t, 3 H, C2H5) ppm. HRMS (CI): m/z calcd for C14H20N4O8 + H: 373.1359; found: 373.1349.
Compound 22: [α]D ²4 -1.2 (c 0.75, CH2Cl2). IR: νmax = 2112 (N3) cm. ¹H NMR (500 MHz, CDCl3): δ = 7.41 (s, 5 H, Ph), 6.79 (d, 1 H, J 1,2 = 4.5 Hz, H-1), 5.20 (dd, 1 H, J 4,5 = 8.0 Hz, J 3,4 = 5.0 Hz, H-4), 5.15 (dd, 1 H, J 2,3 = 4.5 Hz, H-2), 4.94 (dd, 1 H, H-3), 4.91 (s, 2 H, CH2Ph), 4.34 (dd, 1 H, J 6,6  = 12.0, J 5,6 = 3.0 Hz, H-6), 4.24 (ddd, J 5,6  = 4.5 Hz, H-5), 4.04 (dd, 1 H, H-6′), 2.14, 2.08 (2 s, each 3 H, 2 COCH3) ppm. ¹³C NMR (125.7 MHz, CDCl3): δ = 170.7, 170.2, 136.2, 132.0-129.2, 77.2, 77.0, 73.5, 69.3, 63.3, 62.7, 20.9, 20.4 ppm. HRMS (CI): m/z calcd for C17H20N4O6 + H: 377.1461; found: 377.1454.