References and Notes
<A NAME="RD27109ST-1A">1a</A>
Taylor EA.
Clinch K.
Kelly PM.
Li L.
Evans GB.
Tyler PC.
Schramn VL.
J. Am. Chem. Soc.
2007,
129:
6984
<A NAME="RD27109ST-1B">1b</A>
Pellisier H.
Tetrahedron
2005,
61:
2947
<A NAME="RD27109ST-1C">1c</A>
Schmieg J.
Yang G.
Franck RW.
Tsuji MO.
J. Exp. Med.
2003,
198:
1631
<A NAME="RD27109ST-1D">1d</A>
Levy W.
Chang D.
The Chemistry
of C-Glycosyl Compound
Elsevier;
Cambridge:
1995.
<A NAME="RD27109ST-2A">2a</A>
Kaliappan KP.
Subrahmanyam AV.
Org. Lett.
2007,
9:
1121
<A NAME="RD27109ST-2B">2b</A>
Moreno B.
Quehen C.
Rose-Helene M.
Leclerc E.
Quirion J.-C.
Org.
Lett.
2007,
9:
2477
<A NAME="RD27109ST-2C">2c</A>
Taillefumier C.
Chapleur Y.
Chem. Rev.
2004,
104:
263
<A NAME="RD27109ST-3A">3a</A>
Vera-Ayoso Y.
Borrachero P.
Cabrera-Escribano F.
Carmona AT.
Gómez-Guillén M.
Tetrahedron: Asymmetry
2005,
16:
889
<A NAME="RD27109ST-3B">3b</A>
Vera-Ayoso Y.
Borrachero P.
Cabrera-Escribano F.
Carmona AT.
Gómez-Guillén M.
Tetrahedron: Asymmetry
2004,
15:
429
<A NAME="RD27109ST-3C">3c</A>
Borrachero P.
Cabrera-Escribano F.
Carmona AT.
Gómez-Guillén M.
Tetrahedron:
Asymmetry
2000,
11:
2927
<A NAME="RD27109ST-3D">3d</A>
Borrachero P.
Cabrera-Escribano F.
Gómez-Guillén M.
Madrid-Díaz F.
Tetrahedron
Lett.
1997,
38:
1231
<A NAME="RD27109ST-4">4</A> One of most important principles
of Green Chemistry is that of atom economy. Rearrangements are considered
as atom economic reactions:
Anastas Y.
Warner JC.
Green Chemistry:
Theory and Practice
Oxford University Press;
New
York:
1998.
<A NAME="RD27109ST-5">5</A>
Kirchning A.
Kujat C.
Luiken S.
Schaumann E.
Eur. J. Org. Chem.
2007,
2387
<A NAME="RD27109ST-6">6</A>
Vera-Ayoso Y.
Borrachero P.
Cabrera-Escribano F.
Gómez-Guillén M.
Vogel P.
Synlett
2006,
45
<A NAME="RD27109ST-7A">7a</A>
Aye Y.
Davies SG.
Garner C.
Roberts PM.
Smith AD.
Thomson JE.
Org. Biomol. Chem.
2008,
6:
2195
<A NAME="RD27109ST-7B">7b</A>
Benedek G.
Palkó M.
Wéber E.
Martinek TA.
Forró E.
Fülöp F.
Eur.
J. Org. Chem.
2008,
3724
<A NAME="RD27109ST-7C">7c</A>
Forró E.
Fülöp F.
Chem.
Eur. J.
2007,
13:
6397
<A NAME="RD27109ST-8A">8a</A>
Sharma GVM.
Babu BS.
Chatterjee D.
Ramakrishna KVS.
Kunwar AC.
Schramm P.
Hofmann H.-H.
J.
Org. Chem.
2009,
74:
6703
<A NAME="RD27109ST-8B">8b</A>
Choi SH.
Guzei IA.
Spencer LC.
Gellman SH.
J.
Am. Chem. Soc.
2008,
130:
6544
<A NAME="RD27109ST-8C">8c</A>
Prabhakaran P.
Kale SS.
Puranik VG.
Rajamohanan PR.
Chetina O.
Howard JAK.
Hofmann H.-J.
Sanjayan GJ.
J. Am. Chem. Soc.
2008,
130:
17743
<A NAME="RD27109ST-8D">8d</A>
Schmitt MA.
Choi SH.
Guzei IA.
Gellman SH.
J.
Am. Chem. Soc.
2006,
128:
4538
<A NAME="RD27109ST-9A">9a</A>
Seebach D.
Gardiner J.
Acc.
Chem. Res.
2008,
41:
1366
<A NAME="RD27109ST-9B">9b</A>
Sadowsky JD.
Schmitt MA.
Lee HS.
Umezawa N.
Wang S.
Tomita Y.
Gellman SH.
J. Am. Chem. Soc.
2005,
127:
11966
<A NAME="RD27109ST-10">10</A>
Fülöp F.
Martinek TA.
Tóth GK.
Chem. Soc. Rev.
2006,
35:
323
<A NAME="RD27109ST-11A">11a</A>
Stanley LM.
Sibi MP.
Chem. Rev.
2008,
108:
2887
<A NAME="RD27109ST-11B">11b</A>
Ratner DM.
Adams EW.
Disney MD.
Seeberger PH.
ChemBioChem
2004,
5:
1375
<A NAME="RD27109ST-12">12</A>
Baer HH.
Gan Y.
Carbohydr. Res.
1991,
210:
233
<A NAME="RD27109ST-13">13</A>
Preparation and
More Relevant Data of Compound 10
A soln of 9 (105 mg, 0.340 mmol) in dry THF (4.8
mL) containing 3 Å MS was treated with NaCNBH3 (273
mg, 4.35 mmol). The mixture was stirred for 15 min, and then Et2O-HCl
(3.5%, 6 mL) was added. After 5 min, the reaction was diluted
with H2O (20 mL) and CH2Cl2 (20
mL). After separation, the organic layer was successively washed
with sat. aq NaHCO3 (50 mL) and brine (50 mL), dried
(Na2SO4), and concentrated. Column chromatography
(hexane-EtOAc, 3:1) gave pure 10 (64
mg, 64%).
Analytical Data
[α]D
²4 +16.2
(c 0.63, CH2Cl2).
IR: νmax = 2108 (N3) cm-¹. ¹H NMR
(500 MHz, acetone-d
6): δ = 7.36-7.26
(m, 5 H, Ph), 4.75 (s br, 1 H, OHC4), 4.55 (s, 2 H, CH2Ph),
4.55-4.53 (m, 1 H, H-4), 4.17 (ddd, 1 H, J
1,2 = J
1
′
,2 = 5.7
Hz, J
2,3 = 3.7
Hz, H-2), 4.14 (dd, 1 H, J
3,4 = 4.2
Hz, H-3), 3.93 (ddd, 1 H, J
4,5 = 7.5
Hz, J
5,6
′ = 4.5
Hz, J
5,6 = 3.0
Hz, H-5), 3.65 (dd, 1 H, J
6,6
′ = 11.0
Hz, H-6), 3.58 (dd, 1 H, H-6′), 3.56 (dd, 1 H, J
1,1
′ = 10.0
Hz, H-1), 3.43 (dd, 1 H, H-1′), 3.31 (s, 3H, OCH3)
ppm. HRMS (CI): m/z calcd for
C14H19N3O4 + H: 294.1454;
found: 294.1462.
The calculations were performed
at the University of Barcelona. Lowest-energy conformer were calculated
by performing Monte Carlo conformational searches (50000 steps)
with MacroModel 8.5 (MM2*, CHCl3, GB/SA):
<A NAME="RD27109ST-14A">14a</A>
Mohamadi F.
Richards NGJ.
Guida WC.
Liskamp R.
Lipton M.
Caufied C.
Chang G.
Hendrickson T.
Still WC.
J. Comp. Chem.
1990,
11:
440
<A NAME="RD27109ST-14B">14b</A>
Still WC.
Tempczyk A.
Hawley RC.
Hendrickson T.
J.
Am. Chem. Soc.
1990,
112:
6127
<A NAME="RD27109ST-15">15</A>
Borrachero P.
Cabrera F.
Diánez MJ.
Estrada MD.
Gómez-Guillén M.
López-Castro A.
Moreno J.
Paz J.
Pérez-Garrido S.
Tetrahedron: Asymmetry
1999,
10:
77
<A NAME="RD27109ST-16">16</A>
The ratio of 24/25 was calculated by the ¹H
NMR (CDCl3) of the mixture, in particular from the signals
of H-4 of both stereoisomers: δ = 5.65 ppm (dd,
1 H, J
4,5 = 7.8
Hz, J
3,4 = 4.5 Hz,
H-4) observed for the major stereoisomer 24,
and that observed at δ = 4.80 ppm (dd, 1 H, J
4,5 = 7.2
Hz, J
3,4 = 4.8 Hz,
H-4) for 25.
<A NAME="RD27109ST-17">17</A>
Torres-Sánchez MI.
Borrachero P.
Cabrera-Escribano F.
Gómez-Guillén M.
Angulo-Álvarez M.
Sánchez E.
Favre S.
Vogel P.
Tetrahedron
2007,
18:
1089
<A NAME="RD27109ST-18">18</A>
More Relevant
Data
Compound 16: [α]D
²¹ +37
(c 0.77, acetone). ¹H
NMR (500 MHz, acetone-d
6): δ = 7.36-7.33
(m, 5 H, Ph), 7.09 (d, 1 H, J
NH,3 = 7.0
Hz, CCONH), 6.43 (s br, 1 H, OCONH), 4.58-4.53 (m, 1 H,
H-3), 4.57 and 4.58 (each 2 d, 1 H, J
H,H
′ = 12.9 Hz,
CH2Ph), 4.45 (d, 1 H, J
OH,4 = 8.0
Hz, OHC4), 4.31 (ddd, 1 H, J
2,3 = 8.0
Hz, J
1
′
,2 = 4.5
Hz, J
1,2 = 3.0
Hz, H-2), 4.17-4.14 (m, 1 H, H-4), 4.01 (ddd, 1 H, J
5,6 = J
5,6
′ = 4.0
Hz, J
4,5 = 3.0
Hz, H-5), 3.77 (dd, 1 H, J
gem = 16.5
Hz, J
NH,CH2a = 6.0
Hz, NHCH
a
2), 3.72
(dd, 1 H, J
NH,CH2b = 6.0
Hz, NHCH
b
2), 3.55
(dd, 1 H, J
6,6
′ = 10.5
Hz, H-6), 3.52 (dd, 1 H, H-6′), 3.50 (dd, 1 H, J
1,1
′ = 10.5
Hz, H-1), 3.40 (dd, 1 H, H-1′), 3.35 (s, 3 H, OCH3),
1.43 [s, 9 H, C(CH3)3] ppm. ¹³C NMR
(125.7 MHz, acetone-d
6): δ = 170.5,
157.0, 139.6-128.2, 85.2, 79.6, 78.9, 73.8, 73.1, 72.9, 72.0, 59.3,
53.9, 44.9, 28.6 ppm. HRMS (CI): m/z calcd
for C21H32N2O7 + H: 425.2288;
found: 425.2291. Anal. Calcd for C21H32N2O7:
C, 59.42; H, 7.60; N, 6.60. Found: C, 59.12; H, 7.45; N, 6.72.
Compound 20: [α]D
²4 +52
(c 0.66, CH2Cl2).
IR: νmax = 2114 (N3) cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 7.07 (dd,
1 H, J
NH,CH2a = 5.0
Hz, NH), 5.22 (dd, 1 H, J
4,5 = 8.5
Hz, J
3,4 = 4.5 Hz,
H-4), 4.68 (dd, 1 H, J
2,3 = 4.5
Hz, H-3), 4.62 (d, 1 H, H-2), 4.40-4.36 (m, 1 H, H-5),
4.36 (dd, 1 H, J
6,6
′ = 12.5
Hz, J
5,6 = 2.5
Hz, H-6), 4.23 (q, 2 H, J = 7.0,
C2H5), 4.13 (dd, 1 H, J
5,6
′ = 4.0
Hz, H-6′), 4.11 (dd, 1 H, J
gem = 18.0
Hz, NHCH
a
2), 4.07
(dd, 1 H, NHCH
b
2),
2.16, 2.09 (2 s, each 3 H, COCH3), 1.29 (t, 3 H, C2H5)
ppm. HRMS (CI): m/z calcd for C14H20N4O8 + H:
373.1359; found: 373.1349.
Compound 22: [α]D
²4 -1.2
(c 0.75, CH2Cl2).
IR: νmax = 2112 (N3) cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 7.41 (s,
5 H, Ph), 6.79 (d, 1 H, J
1,2 = 4.5
Hz, H-1), 5.20 (dd, 1 H, J
4,5 = 8.0
Hz, J
3,4 = 5.0
Hz, H-4), 5.15 (dd, 1 H, J
2,3 = 4.5
Hz, H-2), 4.94 (dd, 1 H, H-3), 4.91 (s, 2 H, CH2Ph),
4.34 (dd, 1 H, J
6,6
′ = 12.0, J
5,6 = 3.0
Hz, H-6), 4.24 (ddd, J
5,6
′ = 4.5
Hz, H-5), 4.04 (dd, 1 H, H-6′), 2.14, 2.08 (2 s, each 3
H, 2 COCH3) ppm. ¹³C NMR
(125.7 MHz, CDCl3): δ = 170.7, 170.2, 136.2,
132.0-129.2, 77.2, 77.0, 73.5, 69.3, 63.3, 62.7, 20.9, 20.4 ppm.
HRMS (CI): m/z calcd for C17H20N4O6 + H: 377.1461;
found: 377.1454.