References and Notes
For recent reviews, see:
<A NAME="RY00909ST-1A">1a</A>
Connon SJ.
Lett. Org. Chem.
2006,
3:
333
<A NAME="RY00909ST-1B">1b</A>
Vedejs E.
Jure M.
Angew. Chem. Int. Ed.
2005,
44:
3974
<A NAME="RY00909ST-1C">1c</A>
Miller SJ.
Acc. Chem. Soc.
2004,
37:
601
<A NAME="RY00909ST-1D">1d</A>
Fu GC.
Acc.
Chem. Res.
2004,
37:
542
<A NAME="RY00909ST-1E">1e</A>
France S.
Guerin DJ.
Miller SJ.
Lectka T.
Chem. Rev.
2003,
103:
2985
<A NAME="RY00909ST-2">2</A>
Ishihara K.
Kosugi Y.
Umemura S.
Sakakura A.
Org. Lett.
2008,
10:
3191
For recent reports of asymmetric
derivatization of racemic alcohols, see:
<A NAME="RY00909ST-3A">3a</A>
Sánchez-Roselló M.
Puchlopek ALA.
Morgan AJ.
Miller SJ.
J. Org. Chem.
2008,
73:
1774
<A NAME="RY00909ST-3B">3b</A>
Lewis CA.
Chiu A.
Kubryk M.
Balsells J.
Pollard D.
Esser CK.
Murry J.
Reamer RA.
Hansen KB.
Miller SJ.
J.
Am. Chem. Soc.
2006,
128:
16454
<A NAME="RY00909ST-3C">3c</A>
Lewis CA.
Miller SJ.
Angew.
Chem. Int. Ed.
2006,
45:
5616
<A NAME="RY00909ST-3D">3d</A>
Zhao Y.
Rodrigo J.
Hoveyda AH.
Snapper ML.
Nature (London)
2006,
443:
67
<A NAME="RY00909ST-3E">3e</A>
Birman VB.
Li X.
Org. Lett.
2006,
8:
1351
<A NAME="RY00909ST-3F">3f</A>
Birman VB.
Jiang H.
Li X.
Guo L.
Uffman EW.
J.
Am. Chem. Soc.
2006,
128:
6536
<A NAME="RY00909ST-3G">3g</A>
Birman VB.
Guo L.
Org. Lett.
2006,
8:
4859
<A NAME="RY00909ST-3H">3h</A>
Birman VB.
Jiang H.
Org. Lett.
2005,
7:
3445
<A NAME="RY00909ST-3I">3i</A>
Lewis CA.
Sculimbrene BR.
Xu Y.
Miller SJ.
Org.
Lett.
2005,
7:
3021
<A NAME="RY00909ST-3J">3j</A>
Sculimbrene BR.
Xu Y.
Miller SJ.
J. Am. Chem. Soc.
2004,
126:
13182
<A NAME="RY00909ST-3K">3k</A>
Birman VB.
Uffman EW.
Jiang H.
Li X.
Kilbane CJ.
J. Am. Chem. Soc.
2004,
126:
12226
<A NAME="RY00909ST-3L">3l</A>
Fierman
MB.
O’Leary DJ.
Steinmetz WE.
Miller SJ.
J. Am. Chem. Soc.
2004,
126:
6967
<A NAME="RY00909ST-3M">3m</A>
Griswold KS.
Miller
SJ.
Tetrahedron
2003,
59:
8869
<A NAME="RY00909ST-3N">3n</A>
Sculimbrene BR.
Morgan AJ.
Miller SJ.
Chem. Commun.
2003,
1781
<A NAME="RY00909ST-3O">3o</A>
Kawabata T.
Stragies R.
Fukaya T.
Fuji K.
Chirality
2003,
15:
71
<A NAME="RY00909ST-3P">3p</A>
Priem G.
Pelotier B.
Macdonald SJF.
Anson MS.
Campbell IB.
J. Org. Chem.
2003,
68:
3844
<A NAME="RY00909ST-3Q">3q</A>
Pelotier B.
Priem G.
Campbell IB.
Macdonald
SJF.
Anson MS.
Synlett
2003,
679
<A NAME="RY00909ST-4">4</A> For kinetic resolution of racemic
carboxylic acids, see:
Shiina I.
Nakata K.
Onda Y.
Eur. J. Org.
Chem.
2008,
5887
<A NAME="RY00909ST-5A">5a</A>
Ishihara K.
Kosugi Y.
Akakura M.
J. Am. Chem. Soc.
2004,
126:
12212
<A NAME="RY00909ST-5B">5b</A>
Ishihara K.
Kosugi Y.
Akakura M.
Tetrahedron
2007,
63:
6191
<A NAME="RY00909ST-5C">5c</A> For an account article,
see:
Ishihara K.
Sakakura A.
Hatano M.
Synlett
2007,
686
<A NAME="RY00909ST-6">6</A>
Reduction with lithium aluminium hydride
(4 equiv) gave the corresponding 1,2-diol in high yield without
epimeri-zation.²
Pyroc chloride was prepared as follows: Diallylaminocarbonyl
chloride was reacted in the presence of Grubbs’ first-generation
catalyst (0.5 mol%) under heating conditions (CH2Cl2,
reflux, 4 h). After the reaction mixture was concentrated, the residue
was purified by column chromatography on SiO2 to give
Pyroc chloride in 95% yield.
<A NAME="RY00909ST-7A">7a</A>
Ferguson ML.
O’Leary DJ.
Grubbs
RH.
Org. Synth.
2003,
80:
85
<A NAME="RY00909ST-7B">7b</A>
Fu GC.
Nguyen ST.
Grubbs RH.
J. Am. Chem. Soc.
1993,
115:
9856
<A NAME="RY00909ST-8">8</A> For the synthesis of Pyroc chloride
by ring-closing metathesis with the aid of microwave irradiation,
see:
Vo Thanh G.
Loupy A.
Tetrahedron Lett.
2003,
44:
9091
<A NAME="RY00909ST-9">9</A>
Kagan HB.
Fiaud JC.
Top. Stereochem.
1988,
18:
249
<A NAME="RY00909ST-10A">10a</A>
Aggarwal VK.
Charmant JPH.
Fuentes D.
Harvey JN.
Hynd G.
Ohara D.
Picoul W.
Robiette R.
Smith C.
Vasse J.-L.
Winn CL.
J. Am. Chem. Soc.
2006,
128:
2105
<A NAME="RY00909ST-10B">10b</A>
Ohri RV.
Radosevich AT.
Hrovat KJ.
Musich C.
Huang D.
Holman TR.
Toste FD.
Org. Lett.
2005,
7:
2501
<A NAME="RY00909ST-11">11</A>
Experimental Procedure
for the Deprotection of Pyroc Group in 6a
To a solution
of 6a (0.1 mmol) in dioxane (1 mL) was
added DDQ (0.15 mmol), and the mixture was stirred at 85 ˚C
for 2 h. After the reaction mixture was cooled to ambient temperature,
dioxane was removed under reduced pressure. The residue was purified
by column chromatography on SiO2 to give 7a in
98% yield.
Compound 7a: ¹H
NMR (400 MHz, CDCl3): δ = 1.05 (s,
9 H), 1.49 (s, 9 H), 4.02 (dd, J = 2.3,
11.0 Hz, 1 H), 4.21 (dd, J = 4.1,
11.0 Hz, 1 H), 5.22 (dd, J = 2.3,
4.1 Hz, 1 H), 6.26 (dd, J = 1.8,
2.3 Hz, 2 H), 7.29 (dd, J = 1.8,
2.3 Hz, 2 H), 7.30-7.48 (m, 6 H), 7.60-7.74 (m,
4 H). ¹³C NMR (100 MHz, CDCl3): δ = 19.2,
26.5, 28.0, 63.3, 76.0, 82.9, 112.6, 120.2, 127.8, 129.9, 132.7,
132.8, 135.4, 135.5, 149.9, 166.2.
To a solution of 7a (0.085 mmol) in THF (0.17 mL) and MeOH
(0.17 mL) was added 1.5 M aq NaOH (0.085 mL, 0.13 mmol) at 0 ˚C,
and the mixture was stirred at 0 ˚C for 0.5 h. The reaction
mixture was quenched with 1 M aq HCl and diluted with EtOAc. The
organic layer was separated, washed with brine, dried with Na2SO4,
and concentrated. The residue was purified by column chromatography
on SiO2 to give 8a in 93% yield.
Compound 8a: ¹H NMR (400 MHz,
CDCl3): δ = 1.04 (s, 9 H), 1.51 (s,
9 H), 3.88 (dd, J = 2.8,
10.6 Hz, 1 H), 3.99 (dd, J = 2.3,
10.6 Hz, 1 H), 4.10 (dd, J = 2.3,
2.8 Hz, 1 H), 7.31-7.47 (m, 6 H), 7.61-7.74 (m,
4 H).
<A NAME="RY00909ST-12">12</A>
Mita T.
Sasaki K.
Kanai M.
Shibasaki M.
J. Am. Chem. Soc.
2005,
127:
514