Planta Med 2010; 76(4): 372-377
DOI: 10.1055/s-0029-1186140
Analytical Studies
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Chromatographic Fingerprint Investigation for Quality Evaluation and Control of Shengui Hair-Growth Tincture

Hong Yang1 , 2 , Chenxi Zhao1 , Xiaomei Wang1 , Yizeng Liang2 , Yingxu Zeng2 , Hai Wu2 , Qingsong Xu3 , Huiying Lv2
  • 1Department of Biological Engineering and Environmental Science, Changsha University, Changsha, Hunan, P. R. China
  • 2Research Center of Modernization of Chinese Herbal Medicine, Central South University, Changsha, Hunan, P. R. China
  • 3School of Mathematical Sciences, Central South University, Changsha, Hunan, P. R. China
Further Information

Publication History

received July 6, 2009 revised August 1, 2009

accepted August 16, 2009

Publication Date:
15 September 2009 (online)

Preview

Abstract

The quality assessment and control of traditional Chinese medicines (TCM) has received a great deal of attention worldwide with its tremendous increasing use. Chromatographic fingerprinting is thought to be a good approach for this task and has been used for the quality assessment and control of many herbal medicines. However, there are only a few reports on the quality control of TCM preparation by chromatographic fingerprinting. In the present work, gas chromatography-mass spectrometry (GC‐MS) combined with chemometric methods were used for the chromatographic fingerprint analysis and characterization of Shengui hair-growth tincture (SGHGT), which is a complex TCM prescription made from 9 herbs. Thirteen “common peaks” were identified by MS and a comparison of retention indices. The software “The Traditional Chinese Medicine Quality Control System 1.0” (TCMQCS, developed by Research Center of Modernization of Chinese Herbal Medicine, Central South University) was used to evaluate the similarities. Principal component analysis (PCA) was used for the classification of 23 batches of SGHGT samples provided by Hunan Fusheng Hairgrowth Pharmaceutical Factory. The 23 batches of samples made in different years had similar GC‐MS fingerprints. Four clusters were obtained from PCA treatment according to their production year. The proposed method was validated in precision and repeatability through the calculation of relative retention times and relative peak areas of the 13 common compounds to the reference compound eugenol. The result indicated that the method is feasible and applicable for the quality control of SGHGT.

Supporting information available online at http://www.thieme-connect.de/ejournals/toc/plantamedica

References

Prof. Dr. Chenxi Zhao

Department of Biological Engineering and Environmental Science
Changsha University

Changsha

410003 Hunan

People's Republic of China

Phone: + 86 7 31 84 26 15 06

Fax: + 86 7 31 84 26 14 21

Email: cxzh003@163.com