Der primäre ätiologische Faktor für die Entstehung periimplantärer Infektionen ist
die Adhäsion oralpathogener Biofilme an Implantatstrukturen im Bereich der Weichgewebs–Durchtrittsstelle.
Ziel dieser Untersuchung war es, in einem humanen In–vivo–Modell die initiale Biofilmbildung
auf Titan–Abutments unter Berücksichtigung der Lokalisation quantitativ zu evaluieren.
Dazu wurden 15 Implantat–Abutments bei insgesamt 6 Patienten über einen Zeitraum von
14 Tagen in die Mundhöhle eingebracht. Nach Entnahme der Abutments wurden die angelagerten
Biofilmformationen quantitativ mittels der konfokalen Laser–Scanning–Mikroskopie untersucht.
Die statistische Analyse der Daten erfolgte mithilfe des Mann–Whitney–U–Tests für
unabhängige Stichproben. Die Auswertung der quantitativen Analyse der Biofilmdicken
ergab für die gesamte Probenzahl einen durchschnittlichen Wert von 11,6 μm (± 13,1
μm). Als statistisch signifikant erwies sich der Unterschied zwischen den Biofilmdicken
des Ober– und Unterkiefers. Der Unterschied zwischen oral und vestibulär lokalisierten
Oberflächen zeigte dagegen ebenso wie der Unterschied zwischen Front– und Seitenzahnbereichen
des Oberkiefers keine statistische Signifikanz.
The primary aetiologic factor for the appearance of peri–implant infections is the
adherence of oralpathogenic biofilms on implants in the area of soft–tissue penetration.
The aim of the present study was to evaluate the initial biofilm formation on implant–supported
titan abutments considering their localization within a human in–vivo–model. Therefore,
15 implant abutments at overall six patients were placed in the oral cavity for 14
days. After removal of the abutments the attached biofilm formations were quantitatively
analysed using the confocal laser scanning microscopy (CLSM). Statistical analysis
was performed by Mann–Whitney–U–test for independent samples. Results of the quantitative
analysis displayed a mean biofilmthickness of 11.6 μm (± 13.1 μm) for all samples.
The different biofilmthickness between upper and lower jaw were statistically significant.
This statistical significance could not be observed for oral and buccal or anterior
and posterior regions.
Schlüsselwörter
Biofilm - konfokale Laser–Scanning–Mikroskopie - Implantat–Abutments - Lokalisation
Key Words
Biofilm - Confocal Laser Scanning Microscopy - Implant Abutments - Localization
Literatur
1
Arweiler B N, Hellwig E, Sculean A. et al. .
Individual vitality pattern of in situ dental biofilms at different locations in the
oral cavity.
Caries Res.
2004;
38
442-447
2
Auschill M T, Arweiler B N, Brecx M. et al. .
The effect of dental restorative materials on dental biofilm.
Eur J Oral Sci.
2002;
110
48-52
3
Auschill M T, Arweiler B N, Netuschil L. et al. .
Spatial distribution of vital and dead microorganisms in dental biofilms.
Arch Oral Biol.
2001;
46
471-476
4
Auschill M T, Hellwig E, Sculean A. et al. .
Impact of the intraoral location on the rate of biofilm growth.
Clin Oral Investig.
2004;
8
97-101
5
Bollen L C M, Papaioannou W, Van J Eldere. et al. .
The influence of abutment surface roughness on plaque accumulation and peri–implant
mucositis.
Clin Oral Impl Res.
1996;
7
201-211
6
Bos R, van der Mei C H, Busscher J. H.
Physico–chemistry of initial microbial adhesive interactions – its mechanisms and
methods for study.
FEMS Microbial Rev.
1999;
23
179-230
7
Brecx M, Winkler M, Netuschil L..
Human dental plaque formation on plastic films. A quantitative SEM study.
J West Soc Periodontol Abstr.
1994;
42
77-80
8
Costerton W J, Lewandowski Z, Caldwell E D. et al. .
Microbial biofilms.
Annu Rev Microbiol.
1995;
49
711-745
9
Davey E M, O'Toole A. G.
Microbial biofilms: from ecology to molecular genetics.
Microbiol Mol Biol Rev.
2000;
64
847-867
10
Elter C, Heuer W, Demling A. et al. .
Supra– and subgingival biofilm formation on implant abutments with different surface
characteristics.
Int J Oral Maxillofac Impl.
2008;
23
327-334
11
Groessner–Schreiber B, Hannig M, Duck A. et al. .
Do different implant surfaces exposed in the oral cavity of humans show different
biofilm compositions and activities?.
Eur J Oral Sci.
2004;
112
516-522
12 Haberstroh E.. Pilotstudie zur klinischen Untersuchung der oralen Biofilmbildung
auf verschiedenen Bracket–Adhäsivsystemen mittels der Konfokalen Laser–Scanning–Mikroskopie. Master's
thesis, Universität Freiburg 2006
13
Hannig M..
Transmission electron microscopy of early plaque formation on dental materials in
vivo.
Eur J Oral Sci.
1999;
107
55-64
14 Hein N.. Dreidimensionale Struktur– und Vitalitätsverteilung oraler bakterieller
Biofilme (Dentaler Plaque). Master's thesis, Universität Freiburg 2003
15
Jayaraman A, Wood K. T.
Bacterial quorum sensing: signals, circuits, and implications for biofilm and disease.
Annu Rev Biomed Eng.
2008;
10
145-167
16
Karoussis K I, Bragger U, Salvi E G. et al. .
Effect of implant design on survival and success rates of titanium oral implants:
a 10–year prospective cohort study of the ITI Dental Implant System.
Clin Oral Impl Res.
2004;
15
8-17
17
Lawrence R J, Korber R D, Hoyle D B. et al. .
Optical sectioning of microbial biofilms.
J Bacteriol.
1991;
173
6558-6567
18
Marshall C. K.
Biofilms: an overview of bacterial adhesion, activity and control at surfaces.
Am Soc Microbiol.
1992;
58
202-207
19
Netuschil L, Reich E, Unteregger G. et al. .
A pilot study of confocal laser scanning microscopy for the assessment of undisturbed
dental plaque vitality and topography.
Arch Oral Biol.
1998;
43
277-285
20
Quirynen M, De Soete M, van Steengerghe D..
Infectious risks for oral implants.
Clin Oral Impl Res.
2002;
13
1-19
21
Quirynen M, Teughels W..
Microbiologically compromised patients and impact on oral health.
Periodontol 2000.
2003;
33
119-128
22
Scheie A. A.
Mechanisms of dental plaque formation.
Adv Dent Res.
1994;
8
246-253
23
Siegrist E B, Brecx M, Gusberti A F. et al. .
In vivo early human dental plaque formation on different supporting substances. A
scanning electron microscopic and bacteriological study.
Clin Oral Impl Res.
1991;
2
38-46
24
Smedberg I J, Lothigius E, Bodin I. et al. .
A clinical and radiological two–year follow–up study of maxillary overdentures on
osseointegrated implants.
Clin Oral Impl Res.
1993;
4
39-46
25
Stewart P, Costerton W. J.
Antiobiotic resistance of bacteria in biofilms.
Lancet.
2001;
358
135-138
26
Suketa N, Sawase T, Kitaura H. et al. .
An antibacterial surface on dental implants, based on the photocatalytic bactericidal
effect.
Clin Impl Dent Relat Res.
2005;
7
105-111
27
Tonetti S. M.
Risk factors for osseodisintegration.
Periodontol 2000.
1998;
17
55-62
28
van der Veen H M, ten Bosch J. J.
Autofluorescence of bulk sound and in vitro demineralized human root dentin.
Eur J Oral Sci.
1995;
103
375-381
29
Weber P H, Buser D, Fiorellini P J. et al. .
Radiographic evaluation of crestal bone levels adjacent to nonsubmerged titanium implants.
Clin Oral Impl Res.
1992;
3
181-188
30
Wood R S, Kirkham J, Marsh D P. et al. .
Architecture of intact natural human plaque biofilms studied by confocal laser scanning
microscopy.
J Dent Res.
2000;
79
21-27
31
Zaura–Arite E, van Marle J, ten Cate M. J.
Confocal microscopy study of undisturbed and chlorhexidine–treated dental biofilm.
J Dent Res.
2001;
80
1436-1440
Korrespondenzadresse
Prof. Meike Stiesch
Klinik für Zahnärztliche Prothetik und Biomedizinische Werkstoffkunde Medizinische
Hochschule Hannover
Carl–Neuberg–Str. 1
30625 Hannover
Email: Stiesch.Meike@MH–Hannover.de