Subscribe to RSS
DOI: 10.1055/s-0028-1109960
© Georg Thieme Verlag KG Stuttgart · New York
In-vitro-Experimente zur flüssigkeitsmodulierten Mikrowellenablation
In Vitro Experiments on Fluid-Modulated Microwave AblationPublication History
eingereicht: 16.7.2009
angenommen: 28.11.2009
Publication Date:
22 January 2010 (online)

Zusammenfassung
Ziel: In-vitro-Evaluierung verschiedener Flüssigkeiten zur Verstärkung oder zur Protektion bei der Mikrowellenablation (MWA). Material und Methoden: Jeweils 3 Proben à 20 ml von 17 Flüssigkeiten wurden mittels MWA in den Leistungsstufen 10, 20, 30, 40 und 45 Watt erhitzt. Die Erhitzung wurde bis zu einer Temperatur von 80 °C oder einer Dauer von 10 min verfolgt und der Abkühlprozess bis 30 °C beobachtet. Ergebnisse: Am schnellsten ließ sich Gastrografin (370 s), gefolgt von Magnograf (410 s) und HES 10 % (420 s) auf 80 °C erhitzen. Die am schlechtesten zu erhitzende Flüssigkeit war Lipiodol (10 min –54,5 ± 2,43 °C), gefolgt von Aqua dest. (10 min –56 ± 2,42 °C) und Glukose 5 % (10 min –56,6 ± 1,69 °C). Schlecht erhitzbare Flüssigkeiten wie die Glukoselösungen, Lipiodol oder Aqua dest. wiesen eine geringe Steigung der Temperaturkurve in Abhängigkeit der verwendeten Leistungsstufe auf (m = 0,60 – 0,73), wohingegen gut zu erhitzende Flüssigkeiten, wie die Natriumchlorid-Lösungen, Ringer- und HES-Lösungen und die Kontrastmittel Gastrografin, Gadovist und Magnograf, eine bis zu doppelt große Steigung der Temperaturkurve aufwiesen (m = 0,99 – 1,20). Die Steigung der Temperaturkurven korreliert stark positiv mit der maximal erreichten Temperatur bei 45 Watt Leistung (Pearson-Korrelationskoeffizient: 0,97). Schlussfolgerung: Durch die zusätzliche Applikation einer geeigneten Flüssigkeit lassen sich verstärkende oder protektive Effekte bei der MWA erzielen. Zur Verstärkung sind besonders Gastrografin, Gadovist, Magnograf und 10 %-HES geeignet, wohingegen sich eine Protektion besonders durch den Einsatz von Aqua dest., Lipiodol und 5 %-Glukoselösung erzielen lässt.
Abstract
Purpose: Evaluation of the enhancing or protecting effects of different fluids during microwave ablation (MWA). Materials and Methods: 3 samples of 17 different fluids (each 20 ml) were heated using MWA at power levels of 10, 20, 30, 40 and 45 watts. Energy was applied until the temperature reached 80 °C or the duration of heating exceeded 10 minutes. The cooling-down process was then observed until the temperature reached 30 °C. Results: Gastrografin needed the shortest time to be heated up to 80 °C (370 sec), followed by Magnograf (410 sec) and HES 10 % (420 sec). The least heatable fluids were Lipiodol (10 min –54.5 ± 2.43 °C), distilled water (10 min –56 ± 2.42 °C) and Glucose 5 % solution (10 min –56.6 ± 1.69 °C). Fluids which could not be heated well, such as distilled water, Lipiodol or Glucose 5 % solution, had a small slope of the temperature curve as a function of the power level used (m = 0.60 – 0.73), whereas fluids which could be heated well, such as Gastrografin, Magnograf and HES 10 %, had a much steeper slope of the temperature curve as a function of the power level (m = 0.99 – 1.20). With respect to the maximum temperature, the above mentioned groups differed significantly (p < 0.05). The temperature slope correlated strongly with maximum temperatures reached (Pearson correlation coefficient: 0.97). Conclusion: By additionally administering a carefully chosen fluid, enhancing or protecting effects during microwave ablation can be observed. Especially Gastrografin, Magnograf and HES 10 % can be used to enhance ablation effects, whereas protective effects can be observed particularly when using Lipiodol, distilled water and Glucose 5 %-solution.
Key words
ablation procedures - technical aspects - radiofrequency (RF) ablation
Literatur
- 1
Dong B. et al .
Percutaneous sonographically guided microwave coagulation therapy for hepatocellular
carcinoma: results in 234 patients.
Am J Roentgenol.
2003;
180
1547-1555
MissingFormLabel
- 2
Xu H X. et al .
Ultrasound-guided percutaneous thermal ablation of hepatocellular carcinoma using
microwave and radiofrequency ablation.
Clin Radiol.
2004;
59
53-61
MissingFormLabel
- 3
Shibata T. et al .
Small hepatocellular carcinoma: comparison of radio-frequency ablation and percutaneous
microwave coagulation therapy.
Radiology.
2002;
223
331-337
MissingFormLabel
- 4
Simon C J, Dupuy D E, Mayo-Smith W W.
Microwave ablation: principles and applications.
Radiographics.
2005;
25
S69-S83
MissingFormLabel
- 5
Liang P. et al .
Prognostic factors for percutaneous microwave coagulation therapy of hepatic metastases.
Am J Roentgenol.
2003;
181
1319-1325
MissingFormLabel
- 6
Lubienski A. et al .
Radiofrequency thermal ablation: increase in lesion diameter with continuous acetic
acid infusion.
Cardiovasc Intervent Radiol.
2005;
28
789-794
MissingFormLabel
- 7
Livraghi T. et al .
Saline-enhanced radio-frequency tissue ablation in the treatment of liver metastases.
Radiology.
1997;
202
205-210
MissingFormLabel
- 8
Ahmed M. et al .
Improved coagulation with saline solution pretreatment during radiofrequency tumor
ablation in a canine model.
J Vasc Interv Radiol.
2002;
13
717-724
MissingFormLabel
- 9 Figura L O. Lebensmittelphysik. Heidelberg; Springer Verlag 2004
MissingFormLabel
- 10 Kurzhals H A. Lexikon Lebensmitteltechnik,. Lebensmitteltechnik Hamburg; Behr’s Verlag 2003: 219
MissingFormLabel
- 11
Wright A S, Lee F T, Mahvi D M.
Hepatic microwave ablation with multiple antennae results in synergistically larger
zones of coagulation necrosis.
Ann Surg Oncol.
2003;
10
275-283
MissingFormLabel
- 12
Stauffer P R. et al .
Phantom and animal tissues for modelling the electrical properties of human liver.
Int J Hyperthermia.
2003;
19
89-101
MissingFormLabel
- 13
Skinner M G. et al .
A theoretical comparison of energy sources – microwave, ultrasound and laser – for
interstitial thermal therapy.
Phys Med Biol.
1998;
43
3535-3547
MissingFormLabel
- 14
Shock S A. et al .
Microwave ablation with loop antenna: in vivo porcine liver model.
Radiology.
2004;
231
143-149
MissingFormLabel
- 15
Goldberg S N. et al .
Radio-frequency thermal ablation with NaCl solution injection: effect of electrical
conductivity on tissue heating and coagulation-phantom and porcine liver study.
Radiology.
2001;
219
157-165
MissingFormLabel
- 16
Laeseke P F. et al .
Unintended thermal injuries from radiofrequency ablation: protection with 5 % dextrose
in water.
Am J Roentgenol.
2006;
186
S249-S254
MissingFormLabel
- 17
Hinshaw J L. et al .
Radiofrequency ablation of peripheral liver tumors: intraperitoneal 5 % dextrose in
water decreases postprocedural pain.
Am J Roentgenol.
2006;
186
S306-S310
MissingFormLabel
- 18
Bruners Jr P. et al .
Fluid-modulated RF ablation: in-vitro experiments.
Röntgenstr Fortschr.
2007;
179
380-386
MissingFormLabel
- 19
Meissner T, Wentz F.
The complex dielectric constant of pure and sea water from microwave satellite observations.
Geoscience and Remote Sensing.
2004;
42
1836-1849
MissingFormLabel
- 20
Xiangjun L, Raghavan G SV, Yaylayan V A.
Dielectric properties of aqueous solutions of &alpha-D-glucose at 915 MHz.
Journal of Molecular Liquids.
2002;
100
199-205
MissingFormLabel
- 21
Yang W. et al .
Combination therapy of radiofrequency ablation and transarterial chemoembolization
in recurrent hepatocellular carcinoma after hepatectomy compared with single treatment.
Hepatol Res.
2009;
39
231-240
MissingFormLabel
Dr. Peter Paul Isfort
Lehrstuhl für angewandte Medizintechnik, Helmholtz-Institut für Biomedizinische Technik,
RWTH Aachen
Pauwelsstraße 20
52074 Aachen
Phone: ++ 49/2 41/8 08 54 62
Fax: ++ 49/2 41/8 08 24 42
Email: isfort@hia.rwth-aachen.de