Subscribe to RSS
DOI: 10.1055/s-0028-1109766
© Georg Thieme Verlag KG Stuttgart · New York
Wound Healing Responses at the Gastrointestinal Epithelium: a Close Look at Novel Regulatory Factors and Investigative Approaches
Gastrointestinale epitheliale Wundheilung: neue Einblicke und MethodenPublication History
manuscript received: 18.7.2009
manuscript accepted: 19.8.2009
Publication Date:
03 December 2009 (online)

Zusammenfassung
Eine einschichtige Lage von Epithelzellen kleidet den Gastrointestinaltrakt höherer Lebewesen aus und trennt verschiedenste Antigene im Lumen des Darmes von den Immunzellen des Wirtsorganismus in der Lamina propria. Störungen dieser epithelialen Barriere, wie sie beispielsweise im Rahmen von chronisch entzündlichen Darmerkrankungen, von Darmischämien oder infolge bakterieller Infektionen beobachtet werden, induzieren eine ausgeprägte Entzündungsreaktion, die – primär protektiv – überschießen und den Wirtsorganismus dann gefährden kann. Deshalb führen epitheliale Verletzungen zur raschen Induktion einer lokalen Wundheilungsantwort, deren Ziel es ist, die Kontinuität der Epitheldecke und damit die Barrierefunktion wiederherzustellen. Teil dieser Schutzmechanismen ist neben der Epithelzell-Proliferation auch die koordinierte Migration von Epithelzellen in das Wundgebiet bis zum Wundschluss. Zahlreiche Faktoren modulieren diese Prozesse. Sie werden von den Epithelzellen selbst, von Zellen der Lamina propria wie auch von Mikroorganismen im Darmlumen synthetisiert. Dieser Übersichtsartikel fasst die im Rahmen neu entwickelter Ansätze jüngst erweiterten Erkenntnisse zur zellulären Signaltransduktion und der auf sie einwirkenden Faktoren im Rahmen der gastrointestinalen epithelialen Wundheilung und Homeostase kurz zusammen.
Abstract
The gastrointestinal epithelium functions as an important physical barrier that separates the rich, diverse, and potentially immunogenic luminal content from the underlying mucosal immune system. In pathological situations such as inflammatory bowel disease, ischemic/hypoxic episodes and bacterial infection, insults to the intestinal epithelium threaten the integrity of the mucosal barrier and represent a huge challenge for the host. During episodes of epithelial injury and barrier breakdown, the host initiates a rapid wound healing response aimed at resealing the gap region and reestablishing homeostasis. This response named ”restitution” involves migration of epithelial cells toward the injured regions, as well as epithelial cell proliferation until the gap is closed and the barrier function is reestablished. These biological processes are influenced by a variety of factors derived from the gastrointestinal microenvironment, including host epithelial and lamina propria cells, as well as the microbiota, and the dietary and non-dietary components present in the gastrointestinal lumen. In this manuscript, we will review both host signaling events and luminal factors that influence the wound healing response and have an impact on host homeostasis.
Schlüsselwörter
gastrointestinale Epithelzellen - Wundheilung - Schutzmechanismen - Signaltransduktion
Key words
gastrointestinal epithelium - wound healing - microbial host interaction - cell signaling
References
- 1
Packey C D, Sartor R B.
Commensal bacteria, traditional and opportunistic pathogens, dysbiosis and bacterial
killing in inflammatory bowel diseases.
Curr Opin Infect Dis.
2009;
22
292-301
Reference Ris Wihthout Link
- 2
Packey C D, Sartor R B.
Interplay of commensal and pathogenic bacteria, genetic mutations, and immunoregulatory
defects in the pathogenesis of inflammatory bowel diseases.
J Intern Med.
2008;
263
597-606
Reference Ris Wihthout Link
- 3
Sartor R B.
Microbial influences in inflammatory bowel diseases.
Gastroenterology.
2008;
134
577-594
Reference Ris Wihthout Link
- 4
Sartor R B.
Mechanisms of Disease: pathogenesis of Crohn’s disease and ulcerative colitis.
Nat Clin Pract Gastroenterol Hepatol.
2006;
3
390-407
Reference Ris Wihthout Link
- 5
Hermiston M L, Gordon J I.
Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin.
Science.
1995;
270
1203-1207
Reference Ris Wihthout Link
- 6
Dieleman L A, Palmen M J, Akol H. et al .
Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized
by Th1 and Th2 cytokines.
Clin Exp Immunol.
1998;
114
385-391
Reference Ris Wihthout Link
- 7
Neurath M F, Fuss I, Kelsall B L. et al .
Antibodies to interleukin 12 abrogate established experimental colitis in mice.
J Exp Med.
1995;
182
1281-1290
Reference Ris Wihthout Link
- 8
Seno H, Miyoshi H, Brown S L. et al .
Efficient colonic mucosal wound repair requires Trem2 signaling.
Proc Natl Acad Sci U S A.
2009;
106
256-261
Reference Ris Wihthout Link
- 9
Dignass A U.
Mechanisms and modulation of intestinal epithelial repair.
Inflamm Bowel Dis.
2001;
7
68-77
Reference Ris Wihthout Link
- 10
Rieder F, Brenmoehl J, Leeb S. et al .
Wound healing and fibrosis in intestinal disease.
Gut.
2007;
56
130-139
Reference Ris Wihthout Link
- 11
Ciacci C, Lind S E, Podolsky D K.
Transforming growth factor beta regulation of migration in wounded rat intestinal
epithelial monolayers.
Gastroenterology.
1993;
105
93-101
Reference Ris Wihthout Link
- 12
Dignass A U, Podolsky D K.
Cytokine modulation of intestinal epithelial cell restitution: central role of transforming
growth factor beta.
Gastroenterology.
1993;
105
1323-1332
Reference Ris Wihthout Link
- 13
Dignass A U, Tsunekawa S, Podolsky D K.
Fibroblast growth factors modulate intestinal epithelial cell growth and migration.
Gastroenterology.
1994;
106
1254-1262
Reference Ris Wihthout Link
- 14
Wilson A J, Gibson P R.
Epithelial migration in the colon: filling in the gaps.
Clin Sci.
1997;
93
97-108
Reference Ris Wihthout Link
- 15
Kato K, Chen M C, Nguyen M. et al .
Effects of growth factors and trefoil peptides on migration and replication in primary
oxyntic cultures.
Am J Physiol.
1999;
276
G1105-G1116
Reference Ris Wihthout Link
- 16
Taupin D, Podolsky D K.
Trefoil factors: initiators of mucosal healing.
Nat Rev Mol Cell Biol.
2003;
4
721-732
Reference Ris Wihthout Link
- 17
Egan L J, Lecea de A, Lehrman E D. et al .
Nuclear factor-kappa B activation promotes restitution of wounded intestinal epithelial
monolayers.
Am J Physiol Cell Physiol.
2003;
285
C1028-C1035
Reference Ris Wihthout Link
- 18
Karrasch T, Steinbrecher K A, Allard B. et al .
Wound-induced p38 MAPK-dependent histone H 3 phosphorylation correlates with increased
COX-2 expression in enterocytes.
J Cell Physiol.
2006;
207
809-815
Reference Ris Wihthout Link
- 19
Jobin C, Sartor R B.
The I kappa B/NF-kappa B system: a key determinant of mucosal inflammation and protection.
Am J Physiol Cell Physiol.
2000;
278
C451-C462
Reference Ris Wihthout Link
- 20
Karrasch T, Jobin C.
NF-kappaB and the intestine: friend or foe?.
Inflamm Bowel Dis.
2008;
14
114-124
Reference Ris Wihthout Link
- 21
Dobrovolskaia M A, Kozlov S V.
Inflammation and cancer: when NF-kappaB amalgamates the perilous partnership.
Curr Cancer Drug Targets.
2005;
5
325-344
Reference Ris Wihthout Link
- 22
Strauch E D, Bass B L, Rao J N. et al .
NF-kappaB regulates intestinal epithelial cell and bile salt-induced migration after
injury.
Ann Surg.
2003;
237
494-501
Reference Ris Wihthout Link
- 23
Shindo K, Iizuka M, Sasaki K. et al .
Sucralfate prevents the delay of wound repair in intestinal epithelial cells by hydrogen
peroxide through NF-kappaB pathway.
J Gastroenterol.
2006;
41
450-461
Reference Ris Wihthout Link
- 24
Morteau O, Morham S G, Sellon R. et al .
Impaired mucosal defense to acute colonic injury in mice lacking cyclooxygenase-1
or cyclooxygenase-2.
J Clin Invest.
2000;
105
469-478
Reference Ris Wihthout Link
- 25
Kabashima K, Saji T, Murata T. et al .
The prostaglandin receptor EP 4 suppresses colitis, mucosal damage and CD 4 cell activation
in the gut.
J Clin Invest.
2002;
109
883-893
Reference Ris Wihthout Link
- 26
Nitta M, Hirata I, Toshina K. et al .
Expression of the EP 4 prostaglandin E 2 receptor subtype with rat dextran sodium
sulphate colitis: colitis suppression by a selective agonist, ONO-AE1 – 329.
Scand J Immunol.
2002;
56
66-75
Reference Ris Wihthout Link
- 27
Dieckgraefe B K, Weems D M, Santoro S A. et al .
ERK and p38 MAP kinase pathways are mediators of intestinal epithelial wound-induced
signal transduction.
Biochem Biophys Res Commun.
1997;
233
389-394
Reference Ris Wihthout Link
- 28
Goke M, Kanai M, Lynch-Devaney K. et al .
Rapid mitogen-activated protein kinase activation by transforming growth factor alpha
in wounded rat intestinal epithelial cells.
Gastroenterology.
1998;
114
697-705
Reference Ris Wihthout Link
- 29
Frey M R, Golovin A, Polk D B.
Epidermal growth factor-stimulated intestinal epithelial cell migration requires Src
family kinase-dependent p38 MAPK signaling.
J Biol Chem.
2004;
279
44 513-44 521
Reference Ris Wihthout Link
- 30
Frey M R, Dise R S, Edelblum K L. et al .
p38 kinase regulates epidermal growth factor receptor downregulation and cellular
migration.
EMBO J.
2006;
25
5683-5692
Reference Ris Wihthout Link
- 31
Fu X B, Yang Y H, Sun T Z. et al .
Rapid mitogen-activated protein kinase by basic fibroblast growth factor in rat intestine
after ischemia/reperfusion injury.
World J Gastroenterol.
2003;
9
1312-1317
Reference Ris Wihthout Link
- 32
Fu X B, Xing F, Yang Y H. et al .
Activation of phosphorylating-p38 mitogen-activated protein kinase and its relationship
with localization of intestinal stem cells in rats after ischemia-reperfusion injury.
World J Gastroenterol.
2003;
9
2036-2039
Reference Ris Wihthout Link
- 33
Nishimura T, Andoh A, Nishida A. et al .
FR167653, a p38 mitogen-activated protein kinase inhibitor, aggravates experimental
colitis in mice.
World J Gastroenterol.
2008;
14
5851-5856
Reference Ris Wihthout Link
- 34
ten Hove T, Blink van den B, Pronk I. et al .
Dichotomal role of inhibition of p38 MAPK with SB 203 580 in experimental colitis.
Gut.
2002;
50
507-512
Reference Ris Wihthout Link
- 35
Bakin A V, Rinehart C, Tomlinson A K. et al .
p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic
transdifferentiation and cell migration.
J Cell Sci.
2002;
115
3193-3206
Reference Ris Wihthout Link
- 36
Bates R C, Mercurio A M.
Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of
human colonic organoids.
Mol Biol Cell.
2003;
14
1790-1800
Reference Ris Wihthout Link
- 37
Karrasch T, Allard B, Jobin C.
PI3K-dependent GSK3 beta phosphorylation is implicated in the intestinal epithelial
cell wound-healing response.
Gastroenterology.
2006;
130
A490-A491
Reference Ris Wihthout Link
- 38
Novak A, Dedhar S.
Signaling through beta-catenin and Lef/Tcf.
Cell Mol Life Sci.
1999;
56
523-537
Reference Ris Wihthout Link
- 39
Kolligs F T, Bommer G, Goke B.
Wnt/beta-catenin/tcf signaling: a critical pathway in gastrointestinal tumorigenesis.
Digestion.
2002;
66
131-144
Reference Ris Wihthout Link
- 40
Bianchi M, De Lucchini S, Marin O. et al .
Regulation of FAK Ser-722 phosphorylation and kinase activity by GSK3 and PP 1 during
cell spreading and migration.
Biochem J.
2005;
391
359-370
Reference Ris Wihthout Link
- 41
Xu K P, Ding Y, Ling J. et al .
Wound-induced HB-EGF ectodomain shedding and EGFR activation in corneal epithelial
cells.
Invest Ophthalmol Vis Sci.
2004;
45
813-820
Reference Ris Wihthout Link
- 42
Tokumaru S, Higashiyama S, Endo T. et al .
Ectodomain shedding of epidermal growth factor receptor ligands is required for keratinocyte
migration in cutaneous wound healing.
J Cell Biol.
2000;
151
209-220
Reference Ris Wihthout Link
- 43
Beck P L, Rosenberg I M, Xavier R J. et al .
Transforming growth factor-beta mediates intestinal healing and susceptibility to
injury in vitro and in vivo through epithelial cells.
Am J Pathol.
2003;
162
597-608
Reference Ris Wihthout Link
- 44
Wachs F P, Krieg R C, Rodrigues C M. et al .
Bile salt-induced apoptosis in human colon cancer cell lines involves the mitochondrial
transmembrane potential but not the CD 95 (Fas/Apo-1) receptor.
Int J Colorectal Dis.
2005;
20
103-113
Reference Ris Wihthout Link
- 45
Owen C R, Yuan L, Basson M D.
Smad3 knockout mice exhibit impaired intestinal mucosal healing.
Lab Invest.
2008;
88
1101-1109
Reference Ris Wihthout Link
- 46
Delaney J R, Mlodzik M.
TGF-beta activated kinase-1: new insights into the diverse roles of TAK1 in development
and immunity.
Cell Cycle.
2006;
5
2852-2855
Reference Ris Wihthout Link
- 47
Banerjee A, Gerondakis S.
Coordinating TLR-activated signaling pathways in cells of the immune system.
Immunol Cell Biol.
2007;
85
420-424
Reference Ris Wihthout Link
- 48
Adhikari A, Xu M, Chen Z J.
Ubiquitin-mediated activation of TAK1 and IKK.
Oncogene.
2007;
26
3214-3226
Reference Ris Wihthout Link
- 49
Kajino-Sakamoto R, Inagaki M, Lippert E. et al .
Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development
of ileitis and colitis.
J Immunol.
2008;
181
1143-1152
Reference Ris Wihthout Link
- 50
Kim J Y, Kajino-Sakamoto R, Omori E. et al .
Intestinal epithelial-derived TAK1 signaling is essential for cytoprotection against
chemical-induced colitis.
PLoS ONE.
2009;
4
e4561
Reference Ris Wihthout Link
- 51
Burgess A W.
EGFR family: structure physiology signalling and therapeutic targets.
Growth Factors.
2008;
26
263-274
Reference Ris Wihthout Link
- 52
Fiske W H, Threadgill D, Coffey R J.
ERBBs in the gastrointestinal tract: recent progress and new perspectives.
Exp Cell Res.
2009;
315
583-601
Reference Ris Wihthout Link
- 53
Frey M R, Edelblum K L, Mullane M T. et al .
The ErbB4 growth factor receptor is required for colon epithelial cell survival in
the presence of TNF.
Gastroenterology.
2009;
136
217-226
Reference Ris Wihthout Link
- 54
El-Assal O N, Besner G E.
HB-EGF enhances restitution after intestinal ischemia/reperfusion via PI 3K/Akt and
MEK/ERK1 / 2 activation.
Gastroenterology.
2005;
129
609-625
Reference Ris Wihthout Link
- 55
Dise R S, Frey M R, Whitehead R H. et al .
Epidermal growth factor stimulates Rac activation through Src and phosphatidylinositol
3-kinase to promote colonic epithelial cell migration.
Am J Physiol Gastrointest Liver Physiol.
2008;
294
G276-G285
Reference Ris Wihthout Link
- 56
Gayer C P, Chaturvedi L S, Wang S. et al .
Delineating the signals by which repetitive deformation stimulates intestinal epithelial
migration across fibronectin.
Am J Physiol Gastrointest Liver Physiol.
2009;
296
G876-G885
Reference Ris Wihthout Link
- 57
Durer U, Hartig R, Bang S. et al .
TFF3 and EGF induce different migration patterns of intestinal epithelial cells in
vitro and trigger increased internalization of E-cadherin.
Cell Physiol Biochem.
2007;
20
329-346
Reference Ris Wihthout Link
- 58
Hoffmann W.
Trefoil factor family (TFF) peptides: regulators of mucosal regeneration and repair,
and more.
Peptides.
2004;
25
727-730
Reference Ris Wihthout Link
- 59
Dignass A, Lynch-Devaney K, Kindon H. et al .
Trefoil peptides promote epithelial migration through a transforming growth factor
beta-independent pathway.
J Clin Invest.
1994;
94
376-383
Reference Ris Wihthout Link
- 60
Qureshi F G, Leaphart C, Cetin S. et al .
Increased expression and function of integrins in enterocytes by endotoxin impairs
epithelial restitution.
Gastroenterology.
2005;
128
1012-1022
Reference Ris Wihthout Link
- 61
Strauch E D, Wang J Y, Bass B L.
Bile salt stimulates intestinal epithelial cell migration through TGFbeta after wounding.
J Surg Res.
2001;
97
49-53
Reference Ris Wihthout Link
- 62
Strauch E D, Yamaguchi J, Bass B L. et al .
Bile salts regulate intestinal epithelial cell migration by nuclear factor-kappa B-induced
expression of transforming growth factor-beta.
J Am Coll Surg.
2003;
197
974-984
Reference Ris Wihthout Link
- 63
Muhlbauer M, Allard B, Bosserhoff A K. et al .
Differential effects of deoxycholic acid and taurodeoxycholic acid on NF{kappa}B signal
transduction and IL-8 gene expression in colonic epithelial cells.
Am J Physiol Gastrointest Liver Physiol.
2004;
286
G1000-G1008
Reference Ris Wihthout Link
- 64
Yamaguchi N, Argueta J G, Masuhiro Y. et al .
Adiponectin inhibits Toll-like receptor family-induced signaling.
FEBS Lett.
2005;
579
6821-6826
Reference Ris Wihthout Link
- 65
Toledo A, Yamaguchi J, Wang J Y. et al .
Taurodeoxycholate stimulates intestinal cell proliferation and protects against apoptotic
cell death through activation of NF-kappaB.
Dig Dis Sci.
2004;
49
1664-1671
Reference Ris Wihthout Link
- 66
Yamaguchi J, Toledo A, Bass B L. et al .
Taurodeoxycholate increases intestinal epithelial cell proliferation through c-myc
expression.
Surgery.
2004;
135
215-221
Reference Ris Wihthout Link
- 67
Roediger W E.
Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man.
Gut.
1980;
21
793-798
Reference Ris Wihthout Link
- 68
Huang N, Katz J P, Martin D R. et al .
Inhibition of IL-8 gene expression in Caco-2 cells by compounds which induce histone
hyperacetylation.
Cytokine.
1997;
9
27-36
Reference Ris Wihthout Link
- 69
Kamitani H, Ikawa H, Hsi L C. et al .
Regulation of 12-lipoxygenase in rat intestinal epithelial cells during differentiation
and apoptosis induced by sodium butyrate.
Arch Biochem Biophys.
1999;
368
45-55
Reference Ris Wihthout Link
- 70
Fusunyan R D, Quinn J J, Fujimoto M. et al .
Butyrate switches the pattern of chemokine secretion by intestinal epithelial cells
through histone acetylation.
Mol Med.
1999;
5
631-640
Reference Ris Wihthout Link
- 71
Wilson A J, Gibson P R.
Short-chain fatty acids promote the migration of colonic epithelial cells in vitro.
Gastroenterology.
1997;
113
487-496
Reference Ris Wihthout Link
- 72
Wong J M, Souza de R, Kendall C W. et al .
Colonic health: fermentation and short chain fatty acids.
J Clin Gastroenterol.
2006;
40
235-243
Reference Ris Wihthout Link
- 73
Wright N A, Hoffmann W, Otto W R. et al .
Rolling in the clover: trefoil factor family (TFF)-domain peptides, cell migration
and cancer.
FEBS Lett.
1997;
408
121-123
Reference Ris Wihthout Link
- 74
Playford R J, Marchbank T, Chinery R. et al .
Human spasmolytic polypeptide is a cytoprotective agent that stimulates cell migration.
Gastroenterology.
1995;
108
108-116
Reference Ris Wihthout Link
- 75
Babyatsky M W, deBeaumont M, Thim L. et al .
Oral trefoil peptides protect against ethanol- and indomethacin-induced gastric injury
in rats.
Gastroenterology.
1996;
110
489-497
Reference Ris Wihthout Link
- 76
Mashimo H, Wu D C, Podolsky D K. et al .
Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor.
Science.
1996;
274
262-265
Reference Ris Wihthout Link
- 77
Playford R J, Marchbank T, Goodlad R A. et al .
Transgenic mice that overexpress the human trefoil peptide pS2 have an increased resistance
to intestinal damage.
Proc Natl Acad Sci U S A.
1996;
93
2137-2142
Reference Ris Wihthout Link
- 78
Vandenbroucke K, Hans W, Van Huysse J. et al .
Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents
and heals acute colitis in mice.
Gastroenterology.
2004;
127
502-513
Reference Ris Wihthout Link
- 79
Kjellev S, Thim L, Pyke C. et al .
Cellular localization, binding sites, and pharmacologic effects of TFF3 in experimental
colitis in mice.
Dig Dis Sci.
2007;
52
1050-1059
Reference Ris Wihthout Link
- 80
Podolsky D K, Gerken G, Eyking A. et al .
Colitis-associated variant of TLR2 causes impaired mucosal repair because of TFF3
deficiency.
Gastroenterology.
2009;
137
209-220
Reference Ris Wihthout Link
- 81
Steidler L, Hans W, Schotte L. et al .
Treatment of murine colitis by Lactococcus lactis secreting interleukin-10.
Science.
2000;
289
1352-1355
Reference Ris Wihthout Link
- 82
Steidler L, Neirynck S, Huyghebaert N. et al .
Biological containment of genetically modified Lactococcus lactis for intestinal delivery
of human interleukin 10.
Nat Biotechnol.
2003;
21
785-789
Reference Ris Wihthout Link
- 83
Nagy T A, Frey M R, Yan F. et al .
Helicobacter pylori regulates cellular migration and apoptosis by activation of phosphatidylinositol
3-kinase signaling.
J Infect Dis.
2009;
199
641-651
Reference Ris Wihthout Link
- 84
Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F. et al .
Recognition of commensal microflora by toll-like receptors is required for intestinal
homeostasis.
Cell.
2004;
118
229-241
Reference Ris Wihthout Link
- 85
Pull S L, Doherty J M, Mills J C. et al .
Activated macrophages are an adaptive element of the colonic epithelial progenitor
niche necessary for regenerative responses to injury.
Proc Natl Acad Sci U S A.
2005;
102
99-104
Reference Ris Wihthout Link
- 86
Brown S L, Riehl T E, Walker M R. et al .
Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial
proliferation during injury.
J Clin Invest.
2007;
117
258-269
Reference Ris Wihthout Link
- 87
Tarnawski A, Hollander D, Stachura J. et al .
Vascular and microvascular changes – key factors in the development of acetic acid-induced
gastric ulcers in rats.
J Clin Gastroenterol.
1990;
12 (Suppl 1)
S148-S157
Reference Ris Wihthout Link
- 88
Tarnawski A, Hollander D, Krause W J. et al .
”Healed” experimental gastric ulcers remain histologically and ultrastructurally abnormal.
J Clin Gastroenterol.
1990;
12 (Suppl 1)
S139-S147
Reference Ris Wihthout Link
- 89
Russo J M, Florian P, Shen L. et al .
Distinct temporal-spatial roles for rho kinase and myosin light chain kinase in epithelial
purse-string wound closure.
Gastroenterology.
2005;
128
987-1001
Reference Ris Wihthout Link
- 90
Williams R M, Zipfel W R, Webb W W.
Multiphoton microscopy in biological research.
Curr Opin Chem Biol.
2001;
5
603-608
Reference Ris Wihthout Link
- 91
Xu C, Zipfel W, Shear J B. et al .
Multiphoton fluorescence excitation: new spectral windows for biological nonlinear
microscopy.
Proc Natl Acad Sci U S A.
1996;
93
10763-10768
Reference Ris Wihthout Link
- 92
Zipfel W R, Williams R M, Christie R. et al .
Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence
and second harmonic generation.
Proc Natl Acad Sci U S A.
2003;
100
7075-7080
Reference Ris Wihthout Link
- 93
Tirlapur U K, Konig K, Peuckert C. et al .
Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species
in mammalian cells leading to apoptosis-like death.
Exp Cell Res.
2001;
263
88-97
Reference Ris Wihthout Link
- 94
Starodub O T, Demitrack E S, Baumgartner H K. et al .
Disruption of the Cox-1 gene slows repair of microscopic lesions in the mouse gastric
epithelium.
Am J Physiol Cell Physiol.
2008;
294
C223-C232
Reference Ris Wihthout Link
- 95
Watson A J, Chu S, Sieck L. et al .
Epithelial barrier function in vivo is sustained despite gaps in epithelial layers.
Gastroenterology.
2005;
129
902-912
Reference Ris Wihthout Link
- 96
Bullen T F, Forrest S, Campbell F. et al .
Characterization of epithelial cell shedding from human small intestine.
Lab Invest.
2006;
86
1052-1063
Reference Ris Wihthout Link
- 97
Moyer R A, Wendt M K, Johanesen P A. et al .
Rho activation regulates CXCL12 chemokine stimulated actin rearrangement and restitution
in model intestinal epithelia.
Lab Invest.
2007;
87
807-817
Reference Ris Wihthout Link
- 98
Amali A A, Rekha R D, Lin C J. et al .
Thioacetamide induced liver damage in zebrafish embryo as a disease model for steatohepatitis.
J Biomed Sci.
2006;
13
225-232
Reference Ris Wihthout Link
- 99
Bates J M, Mittge E, Kuhlman J. et al .
Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation.
Dev Biol.
2006;
297
374-386
Reference Ris Wihthout Link
- 100
Cvejic A, Hall C, Bak-Maier M. et al .
Analysis of WASp function during the wound inflammatory response – live-imaging studies
in zebrafish larvae.
J Cell Sci.
2008;
121
3196-3206
Reference Ris Wihthout Link
- 101
Feitsma H, Cuppen E.
Zebrafish as a cancer model.
Mol Cancer Res.
2008;
6
685-694
Reference Ris Wihthout Link
- 102
Flores M V, Hall C J, Davidson A J. et al .
Intestinal differentiation in zebrafish requires Cdx1b, a functional equivalent of
mammalian Cdx2.
Gastroenterology.
2008;
135
1665-1675
Reference Ris Wihthout Link
- 103
Grabher C, Look A T.
Fishing for cancer models.
Nat Biotechnol.
2006;
24
45-46
Reference Ris Wihthout Link
- 104
Park S W, Davison J M, Rhee J. et al .
Oncogenic KRAS induces progenitor cell expansion and malignant transformation in zebrafish
exocrine pancreas.
Gastroenterology.
2008;
134
2080-2090
Reference Ris Wihthout Link
- 105
Trede N S, Langenau D M, Traver D. et al .
The use of zebrafish to understand immunity.
Immunity.
2004;
20
367-379
Reference Ris Wihthout Link
- 106
Sar A M, Appelmelk B J, Vandenbroucke-Grauls C M. et al .
A star with stripes: zebrafish as an infection model.
Trends Microbiol.
2004;
12
451-457
Reference Ris Wihthout Link
- 107
Wallace K N, Akhter van der S, Smith E M. et al .
Intestinal growth and differentiation in zebrafish.
Mech Dev.
2005;
122
157-173
Reference Ris Wihthout Link
- 108
Yang J, Chan C Y, Jiang B. et al .
hnRNP I Inhibits notch signaling and regulates intestinal epithelial homeostasis in
the zebrafish.
PLoS Genet.
2009;
5
e1000363
Reference Ris Wihthout Link
- 109
Zhang Y, Bai X T, Zhu K Y. et al .
In vivo interstitial migration of primitive macrophages mediated by JNK-matrix metalloproteinase
13 signaling in response to acute injury.
J Immunol.
2008;
181
2155-2164
Reference Ris Wihthout Link
- 110
Keller P J, Schmidt A D, Wittbrodt J. et al .
Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy.
Science.
2008;
322
1065-1069
Reference Ris Wihthout Link
- 111
Stoletov K, Montel V, Lester R D. et al .
High-resolution imaging of the dynamic tumor cell vascular interface in transparent
zebrafish.
Proc Natl Acad Sci U S A.
2007;
104
17406-17411
Reference Ris Wihthout Link
- 112
Helmchen F, Denk W.
Deep tissue two-photon microscopy.
Nat Methods.
2005;
2
932-940
Reference Ris Wihthout Link
- 113
Brustein E, Marandi N, Kovalchuk Y. et al .
”In vivo” monitoring of neuronal network activity in zebrafish by two-photon Ca(2
+ ) imaging.
Pflugers Arch.
2003;
446
766-773
Reference Ris Wihthout Link
- 114
Kirby B B, Takada N, Latimer A J. et al .
In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during
zebrafish development.
Nat Neurosci.
2006;
9
1506-1511
Reference Ris Wihthout Link
- 115
Pack M, Solnica-Krezel L, Malicki J. et al .
Mutations affecting development of zebrafish digestive organs.
Development.
1996;
123
321-328
Reference Ris Wihthout Link
- 116
Abreu M T, Fukata M, Arditi M.
TLR signaling in the gut in health and disease.
J Immunol.
2005;
174
4453-4460
Reference Ris Wihthout Link
- 117
Neurath M F, Pettersson S, Meyer zum Buschenfelde K H. et al .
Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit
of NF-kappa B abrogates established experimental colitis in mice.
Nat Med.
1996;
2
998-1004
Reference Ris Wihthout Link
- 118
Chen L W, Egan L, Li Z W. et al .
The two faces of IKK and NF-kappaB inhibition: prevention of systemic inflammation
but increased local injury following intestinal ischemia-reperfusion.
Nat Med.
2003;
9
575-581
Reference Ris Wihthout Link
- 119
Karrasch T, Kim J S, Jang B I. et al .
The Flavonoid luteolin worsens chemical-induced colitis in NF-kappaB transgenic mice
through blockade of NF-kappaB-dependent protective molecules.
PLoS ONE.
2007;
2
e596
Reference Ris Wihthout Link
- 120
Joo Y E, Karrasch T, Muhlbauer M. et al .
Tomato lycopene extract prevents lipopolysaccharide-induced NF-kappaB signaling but
worsens dextran sulfate sodium-induced colitis in NF-kappaBEGFP mice.
PLoS ONE.
2009;
4
e4562
Reference Ris Wihthout Link
- 121
Merritt A J, Potten C S, Kemp C J. et al .
The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal
tract of normal and p53-deficient mice.
Cancer Res.
1994;
54
614-617
Reference Ris Wihthout Link
- 122
Potten C S.
Interleukin-11 protects the clonogenic stem cells in murine small-intestinal crypts
from impairment of their reproductive capacity by radiation.
Int J Cancer.
1995;
62
356-361
Reference Ris Wihthout Link
- 123
Stallion A, Kou T D, Miller K A. et al .
IL-10 is not protective in intestinal ischemia reperfusion injury.
J Surg Res.
2002;
105
145-152
Reference Ris Wihthout Link
- 124
Zhao H, Montalto M C, Pfeiffer K J. et al .
Murine model of gastrointestinal ischemia associated with complement-dependent injury.
J Appl Physiol.
2002;
93
338-345
Reference Ris Wihthout Link
- 125
Morris G P, Wallace J L.
The roles of ethanol and of acid in the production of gastric mucosal erosions in
rats.
Virchows Arch B Cell Pathol Incl Mol Pathol.
1981;
38
23-38
Reference Ris Wihthout Link
- 126
Hingson D J, Ito S.
Effect of aspirin and related compounds on the fine structure of mouse gastric mucosa.
Gastroenterology.
1971;
61
156-177
Reference Ris Wihthout Link
- 127
Sigthorsson G, Simpson R J, Walley M. et al .
COX-1 and 2, intestinal integrity, and pathogenesis of nonsteroidal anti-inflammatory
drug enteropathy in mice.
Gastroenterology.
2002;
122
1913-1923
Reference Ris Wihthout Link
- 128
Berg D J, Zhang J, Weinstock J V. et al .
Rapid development of colitis in NSAID-treated IL-10-deficient mice.
Gastroenterology.
2002;
123
1527-1542
Reference Ris Wihthout Link
- 129
Watanabe T, Higuchi K, Kobata A. et al .
Non-steroidal anti-inflammatory drug-induced small intestinal damage is Toll-like
receptor 4 dependent.
Gut.
2008;
57
181-187
Reference Ris Wihthout Link
Dr. Thomas Karrasch
Department of Internal Medicine I, University Hospital, University of Regensburg
Franz-Josef-Strauß-Allee 11
93042 Regensburg
Phone: ++ 49/9 41/9 44 70 10
Fax: ++ 49/9 41/9 44 70 73
Email: thomas.karrasch@klinik.uni-regensburg.de