Subscribe to RSS
DOI: 10.1055/s-0028-1109766
© Georg Thieme Verlag KG Stuttgart · New York
Wound Healing Responses at the Gastrointestinal Epithelium: a Close Look at Novel Regulatory Factors and Investigative Approaches
Gastrointestinale epitheliale Wundheilung: neue Einblicke und MethodenPublication History
manuscript received: 18.7.2009
manuscript accepted: 19.8.2009
Publication Date:
03 December 2009 (online)

Zusammenfassung
Eine einschichtige Lage von Epithelzellen kleidet den Gastrointestinaltrakt höherer Lebewesen aus und trennt verschiedenste Antigene im Lumen des Darmes von den Immunzellen des Wirtsorganismus in der Lamina propria. Störungen dieser epithelialen Barriere, wie sie beispielsweise im Rahmen von chronisch entzündlichen Darmerkrankungen, von Darmischämien oder infolge bakterieller Infektionen beobachtet werden, induzieren eine ausgeprägte Entzündungsreaktion, die – primär protektiv – überschießen und den Wirtsorganismus dann gefährden kann. Deshalb führen epitheliale Verletzungen zur raschen Induktion einer lokalen Wundheilungsantwort, deren Ziel es ist, die Kontinuität der Epitheldecke und damit die Barrierefunktion wiederherzustellen. Teil dieser Schutzmechanismen ist neben der Epithelzell-Proliferation auch die koordinierte Migration von Epithelzellen in das Wundgebiet bis zum Wundschluss. Zahlreiche Faktoren modulieren diese Prozesse. Sie werden von den Epithelzellen selbst, von Zellen der Lamina propria wie auch von Mikroorganismen im Darmlumen synthetisiert. Dieser Übersichtsartikel fasst die im Rahmen neu entwickelter Ansätze jüngst erweiterten Erkenntnisse zur zellulären Signaltransduktion und der auf sie einwirkenden Faktoren im Rahmen der gastrointestinalen epithelialen Wundheilung und Homeostase kurz zusammen.
Abstract
The gastrointestinal epithelium functions as an important physical barrier that separates the rich, diverse, and potentially immunogenic luminal content from the underlying mucosal immune system. In pathological situations such as inflammatory bowel disease, ischemic/hypoxic episodes and bacterial infection, insults to the intestinal epithelium threaten the integrity of the mucosal barrier and represent a huge challenge for the host. During episodes of epithelial injury and barrier breakdown, the host initiates a rapid wound healing response aimed at resealing the gap region and reestablishing homeostasis. This response named ”restitution” involves migration of epithelial cells toward the injured regions, as well as epithelial cell proliferation until the gap is closed and the barrier function is reestablished. These biological processes are influenced by a variety of factors derived from the gastrointestinal microenvironment, including host epithelial and lamina propria cells, as well as the microbiota, and the dietary and non-dietary components present in the gastrointestinal lumen. In this manuscript, we will review both host signaling events and luminal factors that influence the wound healing response and have an impact on host homeostasis.
Schlüsselwörter
gastrointestinale Epithelzellen - Wundheilung - Schutzmechanismen - Signaltransduktion
Key words
gastrointestinal epithelium - wound healing - microbial host interaction - cell signaling
References
- 1
Packey C D, Sartor R B.
Commensal bacteria, traditional and opportunistic pathogens, dysbiosis and bacterial
killing in inflammatory bowel diseases.
Curr Opin Infect Dis.
2009;
22
292-301
MissingFormLabel
- 2
Packey C D, Sartor R B.
Interplay of commensal and pathogenic bacteria, genetic mutations, and immunoregulatory
defects in the pathogenesis of inflammatory bowel diseases.
J Intern Med.
2008;
263
597-606
MissingFormLabel
- 3
Sartor R B.
Microbial influences in inflammatory bowel diseases.
Gastroenterology.
2008;
134
577-594
MissingFormLabel
- 4
Sartor R B.
Mechanisms of Disease: pathogenesis of Crohn’s disease and ulcerative colitis.
Nat Clin Pract Gastroenterol Hepatol.
2006;
3
390-407
MissingFormLabel
- 5
Hermiston M L, Gordon J I.
Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin.
Science.
1995;
270
1203-1207
MissingFormLabel
- 6
Dieleman L A, Palmen M J, Akol H. et al .
Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized
by Th1 and Th2 cytokines.
Clin Exp Immunol.
1998;
114
385-391
MissingFormLabel
- 7
Neurath M F, Fuss I, Kelsall B L. et al .
Antibodies to interleukin 12 abrogate established experimental colitis in mice.
J Exp Med.
1995;
182
1281-1290
MissingFormLabel
- 8
Seno H, Miyoshi H, Brown S L. et al .
Efficient colonic mucosal wound repair requires Trem2 signaling.
Proc Natl Acad Sci U S A.
2009;
106
256-261
MissingFormLabel
- 9
Dignass A U.
Mechanisms and modulation of intestinal epithelial repair.
Inflamm Bowel Dis.
2001;
7
68-77
MissingFormLabel
- 10
Rieder F, Brenmoehl J, Leeb S. et al .
Wound healing and fibrosis in intestinal disease.
Gut.
2007;
56
130-139
MissingFormLabel
- 11
Ciacci C, Lind S E, Podolsky D K.
Transforming growth factor beta regulation of migration in wounded rat intestinal
epithelial monolayers.
Gastroenterology.
1993;
105
93-101
MissingFormLabel
- 12
Dignass A U, Podolsky D K.
Cytokine modulation of intestinal epithelial cell restitution: central role of transforming
growth factor beta.
Gastroenterology.
1993;
105
1323-1332
MissingFormLabel
- 13
Dignass A U, Tsunekawa S, Podolsky D K.
Fibroblast growth factors modulate intestinal epithelial cell growth and migration.
Gastroenterology.
1994;
106
1254-1262
MissingFormLabel
- 14
Wilson A J, Gibson P R.
Epithelial migration in the colon: filling in the gaps.
Clin Sci.
1997;
93
97-108
MissingFormLabel
- 15
Kato K, Chen M C, Nguyen M. et al .
Effects of growth factors and trefoil peptides on migration and replication in primary
oxyntic cultures.
Am J Physiol.
1999;
276
G1105-G1116
MissingFormLabel
- 16
Taupin D, Podolsky D K.
Trefoil factors: initiators of mucosal healing.
Nat Rev Mol Cell Biol.
2003;
4
721-732
MissingFormLabel
- 17
Egan L J, Lecea de A, Lehrman E D. et al .
Nuclear factor-kappa B activation promotes restitution of wounded intestinal epithelial
monolayers.
Am J Physiol Cell Physiol.
2003;
285
C1028-C1035
MissingFormLabel
- 18
Karrasch T, Steinbrecher K A, Allard B. et al .
Wound-induced p38 MAPK-dependent histone H 3 phosphorylation correlates with increased
COX-2 expression in enterocytes.
J Cell Physiol.
2006;
207
809-815
MissingFormLabel
- 19
Jobin C, Sartor R B.
The I kappa B/NF-kappa B system: a key determinant of mucosal inflammation and protection.
Am J Physiol Cell Physiol.
2000;
278
C451-C462
MissingFormLabel
- 20
Karrasch T, Jobin C.
NF-kappaB and the intestine: friend or foe?.
Inflamm Bowel Dis.
2008;
14
114-124
MissingFormLabel
- 21
Dobrovolskaia M A, Kozlov S V.
Inflammation and cancer: when NF-kappaB amalgamates the perilous partnership.
Curr Cancer Drug Targets.
2005;
5
325-344
MissingFormLabel
- 22
Strauch E D, Bass B L, Rao J N. et al .
NF-kappaB regulates intestinal epithelial cell and bile salt-induced migration after
injury.
Ann Surg.
2003;
237
494-501
MissingFormLabel
- 23
Shindo K, Iizuka M, Sasaki K. et al .
Sucralfate prevents the delay of wound repair in intestinal epithelial cells by hydrogen
peroxide through NF-kappaB pathway.
J Gastroenterol.
2006;
41
450-461
MissingFormLabel
- 24
Morteau O, Morham S G, Sellon R. et al .
Impaired mucosal defense to acute colonic injury in mice lacking cyclooxygenase-1
or cyclooxygenase-2.
J Clin Invest.
2000;
105
469-478
MissingFormLabel
- 25
Kabashima K, Saji T, Murata T. et al .
The prostaglandin receptor EP 4 suppresses colitis, mucosal damage and CD 4 cell activation
in the gut.
J Clin Invest.
2002;
109
883-893
MissingFormLabel
- 26
Nitta M, Hirata I, Toshina K. et al .
Expression of the EP 4 prostaglandin E 2 receptor subtype with rat dextran sodium
sulphate colitis: colitis suppression by a selective agonist, ONO-AE1 – 329.
Scand J Immunol.
2002;
56
66-75
MissingFormLabel
- 27
Dieckgraefe B K, Weems D M, Santoro S A. et al .
ERK and p38 MAP kinase pathways are mediators of intestinal epithelial wound-induced
signal transduction.
Biochem Biophys Res Commun.
1997;
233
389-394
MissingFormLabel
- 28
Goke M, Kanai M, Lynch-Devaney K. et al .
Rapid mitogen-activated protein kinase activation by transforming growth factor alpha
in wounded rat intestinal epithelial cells.
Gastroenterology.
1998;
114
697-705
MissingFormLabel
- 29
Frey M R, Golovin A, Polk D B.
Epidermal growth factor-stimulated intestinal epithelial cell migration requires Src
family kinase-dependent p38 MAPK signaling.
J Biol Chem.
2004;
279
44 513-44 521
MissingFormLabel
- 30
Frey M R, Dise R S, Edelblum K L. et al .
p38 kinase regulates epidermal growth factor receptor downregulation and cellular
migration.
EMBO J.
2006;
25
5683-5692
MissingFormLabel
- 31
Fu X B, Yang Y H, Sun T Z. et al .
Rapid mitogen-activated protein kinase by basic fibroblast growth factor in rat intestine
after ischemia/reperfusion injury.
World J Gastroenterol.
2003;
9
1312-1317
MissingFormLabel
- 32
Fu X B, Xing F, Yang Y H. et al .
Activation of phosphorylating-p38 mitogen-activated protein kinase and its relationship
with localization of intestinal stem cells in rats after ischemia-reperfusion injury.
World J Gastroenterol.
2003;
9
2036-2039
MissingFormLabel
- 33
Nishimura T, Andoh A, Nishida A. et al .
FR167653, a p38 mitogen-activated protein kinase inhibitor, aggravates experimental
colitis in mice.
World J Gastroenterol.
2008;
14
5851-5856
MissingFormLabel
- 34
ten Hove T, Blink van den B, Pronk I. et al .
Dichotomal role of inhibition of p38 MAPK with SB 203 580 in experimental colitis.
Gut.
2002;
50
507-512
MissingFormLabel
- 35
Bakin A V, Rinehart C, Tomlinson A K. et al .
p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic
transdifferentiation and cell migration.
J Cell Sci.
2002;
115
3193-3206
MissingFormLabel
- 36
Bates R C, Mercurio A M.
Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of
human colonic organoids.
Mol Biol Cell.
2003;
14
1790-1800
MissingFormLabel
- 37
Karrasch T, Allard B, Jobin C.
PI3K-dependent GSK3 beta phosphorylation is implicated in the intestinal epithelial
cell wound-healing response.
Gastroenterology.
2006;
130
A490-A491
MissingFormLabel
- 38
Novak A, Dedhar S.
Signaling through beta-catenin and Lef/Tcf.
Cell Mol Life Sci.
1999;
56
523-537
MissingFormLabel
- 39
Kolligs F T, Bommer G, Goke B.
Wnt/beta-catenin/tcf signaling: a critical pathway in gastrointestinal tumorigenesis.
Digestion.
2002;
66
131-144
MissingFormLabel
- 40
Bianchi M, De Lucchini S, Marin O. et al .
Regulation of FAK Ser-722 phosphorylation and kinase activity by GSK3 and PP 1 during
cell spreading and migration.
Biochem J.
2005;
391
359-370
MissingFormLabel
- 41
Xu K P, Ding Y, Ling J. et al .
Wound-induced HB-EGF ectodomain shedding and EGFR activation in corneal epithelial
cells.
Invest Ophthalmol Vis Sci.
2004;
45
813-820
MissingFormLabel
- 42
Tokumaru S, Higashiyama S, Endo T. et al .
Ectodomain shedding of epidermal growth factor receptor ligands is required for keratinocyte
migration in cutaneous wound healing.
J Cell Biol.
2000;
151
209-220
MissingFormLabel
- 43
Beck P L, Rosenberg I M, Xavier R J. et al .
Transforming growth factor-beta mediates intestinal healing and susceptibility to
injury in vitro and in vivo through epithelial cells.
Am J Pathol.
2003;
162
597-608
MissingFormLabel
- 44
Wachs F P, Krieg R C, Rodrigues C M. et al .
Bile salt-induced apoptosis in human colon cancer cell lines involves the mitochondrial
transmembrane potential but not the CD 95 (Fas/Apo-1) receptor.
Int J Colorectal Dis.
2005;
20
103-113
MissingFormLabel
- 45
Owen C R, Yuan L, Basson M D.
Smad3 knockout mice exhibit impaired intestinal mucosal healing.
Lab Invest.
2008;
88
1101-1109
MissingFormLabel
- 46
Delaney J R, Mlodzik M.
TGF-beta activated kinase-1: new insights into the diverse roles of TAK1 in development
and immunity.
Cell Cycle.
2006;
5
2852-2855
MissingFormLabel
- 47
Banerjee A, Gerondakis S.
Coordinating TLR-activated signaling pathways in cells of the immune system.
Immunol Cell Biol.
2007;
85
420-424
MissingFormLabel
- 48
Adhikari A, Xu M, Chen Z J.
Ubiquitin-mediated activation of TAK1 and IKK.
Oncogene.
2007;
26
3214-3226
MissingFormLabel
- 49
Kajino-Sakamoto R, Inagaki M, Lippert E. et al .
Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development
of ileitis and colitis.
J Immunol.
2008;
181
1143-1152
MissingFormLabel
- 50
Kim J Y, Kajino-Sakamoto R, Omori E. et al .
Intestinal epithelial-derived TAK1 signaling is essential for cytoprotection against
chemical-induced colitis.
PLoS ONE.
2009;
4
e4561
MissingFormLabel
- 51
Burgess A W.
EGFR family: structure physiology signalling and therapeutic targets.
Growth Factors.
2008;
26
263-274
MissingFormLabel
- 52
Fiske W H, Threadgill D, Coffey R J.
ERBBs in the gastrointestinal tract: recent progress and new perspectives.
Exp Cell Res.
2009;
315
583-601
MissingFormLabel
- 53
Frey M R, Edelblum K L, Mullane M T. et al .
The ErbB4 growth factor receptor is required for colon epithelial cell survival in
the presence of TNF.
Gastroenterology.
2009;
136
217-226
MissingFormLabel
- 54
El-Assal O N, Besner G E.
HB-EGF enhances restitution after intestinal ischemia/reperfusion via PI 3K/Akt and
MEK/ERK1 / 2 activation.
Gastroenterology.
2005;
129
609-625
MissingFormLabel
- 55
Dise R S, Frey M R, Whitehead R H. et al .
Epidermal growth factor stimulates Rac activation through Src and phosphatidylinositol
3-kinase to promote colonic epithelial cell migration.
Am J Physiol Gastrointest Liver Physiol.
2008;
294
G276-G285
MissingFormLabel
- 56
Gayer C P, Chaturvedi L S, Wang S. et al .
Delineating the signals by which repetitive deformation stimulates intestinal epithelial
migration across fibronectin.
Am J Physiol Gastrointest Liver Physiol.
2009;
296
G876-G885
MissingFormLabel
- 57
Durer U, Hartig R, Bang S. et al .
TFF3 and EGF induce different migration patterns of intestinal epithelial cells in
vitro and trigger increased internalization of E-cadherin.
Cell Physiol Biochem.
2007;
20
329-346
MissingFormLabel
- 58
Hoffmann W.
Trefoil factor family (TFF) peptides: regulators of mucosal regeneration and repair,
and more.
Peptides.
2004;
25
727-730
MissingFormLabel
- 59
Dignass A, Lynch-Devaney K, Kindon H. et al .
Trefoil peptides promote epithelial migration through a transforming growth factor
beta-independent pathway.
J Clin Invest.
1994;
94
376-383
MissingFormLabel
- 60
Qureshi F G, Leaphart C, Cetin S. et al .
Increased expression and function of integrins in enterocytes by endotoxin impairs
epithelial restitution.
Gastroenterology.
2005;
128
1012-1022
MissingFormLabel
- 61
Strauch E D, Wang J Y, Bass B L.
Bile salt stimulates intestinal epithelial cell migration through TGFbeta after wounding.
J Surg Res.
2001;
97
49-53
MissingFormLabel
- 62
Strauch E D, Yamaguchi J, Bass B L. et al .
Bile salts regulate intestinal epithelial cell migration by nuclear factor-kappa B-induced
expression of transforming growth factor-beta.
J Am Coll Surg.
2003;
197
974-984
MissingFormLabel
- 63
Muhlbauer M, Allard B, Bosserhoff A K. et al .
Differential effects of deoxycholic acid and taurodeoxycholic acid on NF{kappa}B signal
transduction and IL-8 gene expression in colonic epithelial cells.
Am J Physiol Gastrointest Liver Physiol.
2004;
286
G1000-G1008
MissingFormLabel
- 64
Yamaguchi N, Argueta J G, Masuhiro Y. et al .
Adiponectin inhibits Toll-like receptor family-induced signaling.
FEBS Lett.
2005;
579
6821-6826
MissingFormLabel
- 65
Toledo A, Yamaguchi J, Wang J Y. et al .
Taurodeoxycholate stimulates intestinal cell proliferation and protects against apoptotic
cell death through activation of NF-kappaB.
Dig Dis Sci.
2004;
49
1664-1671
MissingFormLabel
- 66
Yamaguchi J, Toledo A, Bass B L. et al .
Taurodeoxycholate increases intestinal epithelial cell proliferation through c-myc
expression.
Surgery.
2004;
135
215-221
MissingFormLabel
- 67
Roediger W E.
Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man.
Gut.
1980;
21
793-798
MissingFormLabel
- 68
Huang N, Katz J P, Martin D R. et al .
Inhibition of IL-8 gene expression in Caco-2 cells by compounds which induce histone
hyperacetylation.
Cytokine.
1997;
9
27-36
MissingFormLabel
- 69
Kamitani H, Ikawa H, Hsi L C. et al .
Regulation of 12-lipoxygenase in rat intestinal epithelial cells during differentiation
and apoptosis induced by sodium butyrate.
Arch Biochem Biophys.
1999;
368
45-55
MissingFormLabel
- 70
Fusunyan R D, Quinn J J, Fujimoto M. et al .
Butyrate switches the pattern of chemokine secretion by intestinal epithelial cells
through histone acetylation.
Mol Med.
1999;
5
631-640
MissingFormLabel
- 71
Wilson A J, Gibson P R.
Short-chain fatty acids promote the migration of colonic epithelial cells in vitro.
Gastroenterology.
1997;
113
487-496
MissingFormLabel
- 72
Wong J M, Souza de R, Kendall C W. et al .
Colonic health: fermentation and short chain fatty acids.
J Clin Gastroenterol.
2006;
40
235-243
MissingFormLabel
- 73
Wright N A, Hoffmann W, Otto W R. et al .
Rolling in the clover: trefoil factor family (TFF)-domain peptides, cell migration
and cancer.
FEBS Lett.
1997;
408
121-123
MissingFormLabel
- 74
Playford R J, Marchbank T, Chinery R. et al .
Human spasmolytic polypeptide is a cytoprotective agent that stimulates cell migration.
Gastroenterology.
1995;
108
108-116
MissingFormLabel
- 75
Babyatsky M W, deBeaumont M, Thim L. et al .
Oral trefoil peptides protect against ethanol- and indomethacin-induced gastric injury
in rats.
Gastroenterology.
1996;
110
489-497
MissingFormLabel
- 76
Mashimo H, Wu D C, Podolsky D K. et al .
Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor.
Science.
1996;
274
262-265
MissingFormLabel
- 77
Playford R J, Marchbank T, Goodlad R A. et al .
Transgenic mice that overexpress the human trefoil peptide pS2 have an increased resistance
to intestinal damage.
Proc Natl Acad Sci U S A.
1996;
93
2137-2142
MissingFormLabel
- 78
Vandenbroucke K, Hans W, Van Huysse J. et al .
Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents
and heals acute colitis in mice.
Gastroenterology.
2004;
127
502-513
MissingFormLabel
- 79
Kjellev S, Thim L, Pyke C. et al .
Cellular localization, binding sites, and pharmacologic effects of TFF3 in experimental
colitis in mice.
Dig Dis Sci.
2007;
52
1050-1059
MissingFormLabel
- 80
Podolsky D K, Gerken G, Eyking A. et al .
Colitis-associated variant of TLR2 causes impaired mucosal repair because of TFF3
deficiency.
Gastroenterology.
2009;
137
209-220
MissingFormLabel
- 81
Steidler L, Hans W, Schotte L. et al .
Treatment of murine colitis by Lactococcus lactis secreting interleukin-10.
Science.
2000;
289
1352-1355
MissingFormLabel
- 82
Steidler L, Neirynck S, Huyghebaert N. et al .
Biological containment of genetically modified Lactococcus lactis for intestinal delivery
of human interleukin 10.
Nat Biotechnol.
2003;
21
785-789
MissingFormLabel
- 83
Nagy T A, Frey M R, Yan F. et al .
Helicobacter pylori regulates cellular migration and apoptosis by activation of phosphatidylinositol
3-kinase signaling.
J Infect Dis.
2009;
199
641-651
MissingFormLabel
- 84
Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F. et al .
Recognition of commensal microflora by toll-like receptors is required for intestinal
homeostasis.
Cell.
2004;
118
229-241
MissingFormLabel
- 85
Pull S L, Doherty J M, Mills J C. et al .
Activated macrophages are an adaptive element of the colonic epithelial progenitor
niche necessary for regenerative responses to injury.
Proc Natl Acad Sci U S A.
2005;
102
99-104
MissingFormLabel
- 86
Brown S L, Riehl T E, Walker M R. et al .
Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial
proliferation during injury.
J Clin Invest.
2007;
117
258-269
MissingFormLabel
- 87
Tarnawski A, Hollander D, Stachura J. et al .
Vascular and microvascular changes – key factors in the development of acetic acid-induced
gastric ulcers in rats.
J Clin Gastroenterol.
1990;
12 (Suppl 1)
S148-S157
MissingFormLabel
- 88
Tarnawski A, Hollander D, Krause W J. et al .
”Healed” experimental gastric ulcers remain histologically and ultrastructurally abnormal.
J Clin Gastroenterol.
1990;
12 (Suppl 1)
S139-S147
MissingFormLabel
- 89
Russo J M, Florian P, Shen L. et al .
Distinct temporal-spatial roles for rho kinase and myosin light chain kinase in epithelial
purse-string wound closure.
Gastroenterology.
2005;
128
987-1001
MissingFormLabel
- 90
Williams R M, Zipfel W R, Webb W W.
Multiphoton microscopy in biological research.
Curr Opin Chem Biol.
2001;
5
603-608
MissingFormLabel
- 91
Xu C, Zipfel W, Shear J B. et al .
Multiphoton fluorescence excitation: new spectral windows for biological nonlinear
microscopy.
Proc Natl Acad Sci U S A.
1996;
93
10763-10768
MissingFormLabel
- 92
Zipfel W R, Williams R M, Christie R. et al .
Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence
and second harmonic generation.
Proc Natl Acad Sci U S A.
2003;
100
7075-7080
MissingFormLabel
- 93
Tirlapur U K, Konig K, Peuckert C. et al .
Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species
in mammalian cells leading to apoptosis-like death.
Exp Cell Res.
2001;
263
88-97
MissingFormLabel
- 94
Starodub O T, Demitrack E S, Baumgartner H K. et al .
Disruption of the Cox-1 gene slows repair of microscopic lesions in the mouse gastric
epithelium.
Am J Physiol Cell Physiol.
2008;
294
C223-C232
MissingFormLabel
- 95
Watson A J, Chu S, Sieck L. et al .
Epithelial barrier function in vivo is sustained despite gaps in epithelial layers.
Gastroenterology.
2005;
129
902-912
MissingFormLabel
- 96
Bullen T F, Forrest S, Campbell F. et al .
Characterization of epithelial cell shedding from human small intestine.
Lab Invest.
2006;
86
1052-1063
MissingFormLabel
- 97
Moyer R A, Wendt M K, Johanesen P A. et al .
Rho activation regulates CXCL12 chemokine stimulated actin rearrangement and restitution
in model intestinal epithelia.
Lab Invest.
2007;
87
807-817
MissingFormLabel
- 98
Amali A A, Rekha R D, Lin C J. et al .
Thioacetamide induced liver damage in zebrafish embryo as a disease model for steatohepatitis.
J Biomed Sci.
2006;
13
225-232
MissingFormLabel
- 99
Bates J M, Mittge E, Kuhlman J. et al .
Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation.
Dev Biol.
2006;
297
374-386
MissingFormLabel
- 100
Cvejic A, Hall C, Bak-Maier M. et al .
Analysis of WASp function during the wound inflammatory response – live-imaging studies
in zebrafish larvae.
J Cell Sci.
2008;
121
3196-3206
MissingFormLabel
- 101
Feitsma H, Cuppen E.
Zebrafish as a cancer model.
Mol Cancer Res.
2008;
6
685-694
MissingFormLabel
- 102
Flores M V, Hall C J, Davidson A J. et al .
Intestinal differentiation in zebrafish requires Cdx1b, a functional equivalent of
mammalian Cdx2.
Gastroenterology.
2008;
135
1665-1675
MissingFormLabel
- 103
Grabher C, Look A T.
Fishing for cancer models.
Nat Biotechnol.
2006;
24
45-46
MissingFormLabel
- 104
Park S W, Davison J M, Rhee J. et al .
Oncogenic KRAS induces progenitor cell expansion and malignant transformation in zebrafish
exocrine pancreas.
Gastroenterology.
2008;
134
2080-2090
MissingFormLabel
- 105
Trede N S, Langenau D M, Traver D. et al .
The use of zebrafish to understand immunity.
Immunity.
2004;
20
367-379
MissingFormLabel
- 106
Sar A M, Appelmelk B J, Vandenbroucke-Grauls C M. et al .
A star with stripes: zebrafish as an infection model.
Trends Microbiol.
2004;
12
451-457
MissingFormLabel
- 107
Wallace K N, Akhter van der S, Smith E M. et al .
Intestinal growth and differentiation in zebrafish.
Mech Dev.
2005;
122
157-173
MissingFormLabel
- 108
Yang J, Chan C Y, Jiang B. et al .
hnRNP I Inhibits notch signaling and regulates intestinal epithelial homeostasis in
the zebrafish.
PLoS Genet.
2009;
5
e1000363
MissingFormLabel
- 109
Zhang Y, Bai X T, Zhu K Y. et al .
In vivo interstitial migration of primitive macrophages mediated by JNK-matrix metalloproteinase
13 signaling in response to acute injury.
J Immunol.
2008;
181
2155-2164
MissingFormLabel
- 110
Keller P J, Schmidt A D, Wittbrodt J. et al .
Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy.
Science.
2008;
322
1065-1069
MissingFormLabel
- 111
Stoletov K, Montel V, Lester R D. et al .
High-resolution imaging of the dynamic tumor cell vascular interface in transparent
zebrafish.
Proc Natl Acad Sci U S A.
2007;
104
17406-17411
MissingFormLabel
- 112
Helmchen F, Denk W.
Deep tissue two-photon microscopy.
Nat Methods.
2005;
2
932-940
MissingFormLabel
- 113
Brustein E, Marandi N, Kovalchuk Y. et al .
”In vivo” monitoring of neuronal network activity in zebrafish by two-photon Ca(2
+ ) imaging.
Pflugers Arch.
2003;
446
766-773
MissingFormLabel
- 114
Kirby B B, Takada N, Latimer A J. et al .
In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during
zebrafish development.
Nat Neurosci.
2006;
9
1506-1511
MissingFormLabel
- 115
Pack M, Solnica-Krezel L, Malicki J. et al .
Mutations affecting development of zebrafish digestive organs.
Development.
1996;
123
321-328
MissingFormLabel
- 116
Abreu M T, Fukata M, Arditi M.
TLR signaling in the gut in health and disease.
J Immunol.
2005;
174
4453-4460
MissingFormLabel
- 117
Neurath M F, Pettersson S, Meyer zum Buschenfelde K H. et al .
Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit
of NF-kappa B abrogates established experimental colitis in mice.
Nat Med.
1996;
2
998-1004
MissingFormLabel
- 118
Chen L W, Egan L, Li Z W. et al .
The two faces of IKK and NF-kappaB inhibition: prevention of systemic inflammation
but increased local injury following intestinal ischemia-reperfusion.
Nat Med.
2003;
9
575-581
MissingFormLabel
- 119
Karrasch T, Kim J S, Jang B I. et al .
The Flavonoid luteolin worsens chemical-induced colitis in NF-kappaB transgenic mice
through blockade of NF-kappaB-dependent protective molecules.
PLoS ONE.
2007;
2
e596
MissingFormLabel
- 120
Joo Y E, Karrasch T, Muhlbauer M. et al .
Tomato lycopene extract prevents lipopolysaccharide-induced NF-kappaB signaling but
worsens dextran sulfate sodium-induced colitis in NF-kappaBEGFP mice.
PLoS ONE.
2009;
4
e4562
MissingFormLabel
- 121
Merritt A J, Potten C S, Kemp C J. et al .
The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal
tract of normal and p53-deficient mice.
Cancer Res.
1994;
54
614-617
MissingFormLabel
- 122
Potten C S.
Interleukin-11 protects the clonogenic stem cells in murine small-intestinal crypts
from impairment of their reproductive capacity by radiation.
Int J Cancer.
1995;
62
356-361
MissingFormLabel
- 123
Stallion A, Kou T D, Miller K A. et al .
IL-10 is not protective in intestinal ischemia reperfusion injury.
J Surg Res.
2002;
105
145-152
MissingFormLabel
- 124
Zhao H, Montalto M C, Pfeiffer K J. et al .
Murine model of gastrointestinal ischemia associated with complement-dependent injury.
J Appl Physiol.
2002;
93
338-345
MissingFormLabel
- 125
Morris G P, Wallace J L.
The roles of ethanol and of acid in the production of gastric mucosal erosions in
rats.
Virchows Arch B Cell Pathol Incl Mol Pathol.
1981;
38
23-38
MissingFormLabel
- 126
Hingson D J, Ito S.
Effect of aspirin and related compounds on the fine structure of mouse gastric mucosa.
Gastroenterology.
1971;
61
156-177
MissingFormLabel
- 127
Sigthorsson G, Simpson R J, Walley M. et al .
COX-1 and 2, intestinal integrity, and pathogenesis of nonsteroidal anti-inflammatory
drug enteropathy in mice.
Gastroenterology.
2002;
122
1913-1923
MissingFormLabel
- 128
Berg D J, Zhang J, Weinstock J V. et al .
Rapid development of colitis in NSAID-treated IL-10-deficient mice.
Gastroenterology.
2002;
123
1527-1542
MissingFormLabel
- 129
Watanabe T, Higuchi K, Kobata A. et al .
Non-steroidal anti-inflammatory drug-induced small intestinal damage is Toll-like
receptor 4 dependent.
Gut.
2008;
57
181-187
MissingFormLabel
Dr. Thomas Karrasch
Department of Internal Medicine I, University Hospital, University of Regensburg
Franz-Josef-Strauß-Allee 11
93042 Regensburg
Phone: ++ 49/9 41/9 44 70 10
Fax: ++ 49/9 41/9 44 70 73
Email: thomas.karrasch@klinik.uni-regensburg.de