RSS-Feed abonnieren
DOI: 10.1055/s-0028-1109520
© Georg Thieme Verlag KG Stuttgart · New York
Matrix-Metalloproteinasen bei chronisch-entzündlichen Darmerkrankungen – von der Grundlagenforschung zur klinischen Bedeutung
Matrix Metalloproteinases in Inflammatory Bowel Disease – From Basic Research to Clinical SignificancePublikationsverlauf
Manuskript eingetroffen: 28.3.2009
Manuskript akzeptiert: 14.5.2009
Publikationsdatum:
06. August 2009 (online)

Zusammenfassung
Matrix-Metalloproteinasen (MMPs) sind zinkabhängige Endopeptidasen, die aufgrund ihres hohen proteolytischen Potenzials die wesentlichen Mediatoren des Umbaus der extrazellulären Matrix (ECM) darstellen. Neben der Fähigkeit, eine vollständige Degradation sämtlicher Metaboliten der ECM vorzunehmen, regulieren MMPs eine Vielzahl von Non-matrix-Substanzen, z. B. Chemokine, Zytokine oder Wachstumsfaktoren. Damit spielen MMPs eine entscheidende Rolle in zahlreichen physiologischen und pathologischen Prozessen wie Angiogenese, Wundheilung und Inflammation, einschließlich den mukosalen Entzündungsvorgängen bei chronisch entzündlichen Darmerkrankungen (CED). In jüngeren Studien konnte über die Mukosadestruktion hinaus eine Vielzahl weiterer Funktionen von MMPs in der Pathophysiologie des gesunden und inflammatorisch veränderten Darmes entschlüsselt werden. Der vorliegende Artikel gibt einen Überblick über die wesentlichen bei CED beteiligten MMPs, deren (patho)physiologische Relevanz sowie die klinischen Schlussfolgerungen, welche aus dem jeweiligen Expressions- und Regulationsverhalten der MMPs abgeleitet werden können.
Abstract
Matrix Metalloproteinases (MMPs) are a family of Zn2 + -dependent endopeptidases that are considered to be the most potent proteases in the turnover of the extracellular matrix (ECM). In addition to their capability for degradating virtually all protein components of the ECM, MMPs regulate a variety of non-matrix substrates such as chemokines, cytokines and growth factors. Therefore MMPs play a central role in a variety of physiological and pathological processes such as angiogenesis, wound healing and inflammatory response including mucosal inflammation associated with inflammatory bowel disease (IBD). Apart from mucosal destruction in IBD, recent studies have identified several new functions of MMPs for the pathophysiology of the healthy and inflamed intestine. This article summarises the main activities of MMPs in IBD with emphasis on their pathophysiological relevance and potential clinical implications based on the expression and regulation patterns of these enzymes.
Schlüsselwörter
Colitis ulcerosa - Morbus Crohn - chronisch entzündliche Darmerkrankung - Matrix-Metalloproteinasen - TIMP
Key words
ulcerative colitis - Crohn’s disease - chronic inflammatory bowel disease - matrix metalloproteinases - TIMP
Literatur
- 1
Woessner J F.
The family of matrix metalloproteinases.
Ann N Y Acad Sci.
1994;
732
11-21
MissingFormLabel
- 2
Overall C M.
Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase
substrate binding domains, modules, and exosites.
Mol Biotechnol.
2002;
22
51-86
MissingFormLabel
- 3
Corry D B, Kiss Jr A, Song L Z. et al .
Overlapping and independent contributions of MMP2 and MMP9 to lung allergic inflammatory
cell egression through decreased CC chemokines.
FASEB J.
2004;
18
995-997
MissingFormLabel
- 4
Okamoto R, Watanabe M.
Cellular and molecular mechanisms of the epithelial repair in IBD.
Dig Dis Sci.
2005;
50 (Suppl 1)
S34-S38
MissingFormLabel
- 5
Parks W C, Wilson C L, Lopez-Boado Y S.
Matrix metalloproteinases as modulators of inflammation and innate immunity.
Nat Rev Immunol.
2004;
4
617-629
MissingFormLabel
- 6
Sternlicht M D, Werb Z.
How matrix metalloproteinases regulate cell behavior.
Annu Rev Cell Dev Biol.
2001;
17
463-516
MissingFormLabel
- 7
Arihiro S, Ohtani H, Hiwatashi N. et al .
Vascular smooth muscle cells and pericytes express MMP-1, MMP-9, TIMP-1 and type I
procollagen in inflammatory bowel disease.
Histopathology.
2001;
39
50-59
MissingFormLabel
- 8
Bailey C J, Hembry R M, Alexander A. et al .
Distribution of the matrix metalloproteinases stromelysin, gelatinases A and B, and
collagenase in Crohn’s disease and normal intestine.
J Clin Pathol.
1994;
47
113-116
MissingFormLabel
- 9
Baugh M D, Perry M J, Hollander A P. et al .
Matrix metalloproteinase levels are elevated in inflammatory bowel disease.
Gastroenterology.
1999;
117
814-822
MissingFormLabel
- 10
Egeblad M, Werb Z.
New functions for the matrix metalloproteinases in cancer progression.
Nat Rev Cancer.
2002;
2
161-174
MissingFormLabel
- 11
Pender S L, Tickle S P, Docherty A J. et al .
A major role for matrix metalloproteinases in T cell injury in the gut.
J Immunol.
1997;
158
1582-1590
MissingFormLabel
- 12
Saarialho-Kere U K, Vaalamo M, Puolakkainen P. et al .
Enhanced expression of matrilysin, collagenase, and stromelysin-1 in gastrointestinal
ulcers.
Am J Pathol.
1996;
148
519-526
MissingFormLabel
- 13
Saarialho-Kere U K.
Patterns of matrix metalloproteinase and TIMP expression in chronic ulcers.
Arch Dermatol Res.
1998;
290 (Suppl)
S47-S54
MissingFormLabel
- 14
Stallmach A, Chan C C, Ecker K W. et al .
Comparable expression of matrix metalloproteinases 1 and 2 in pouchitis and ulcerative
colitis.
Gut.
2000;
47
415-422
MissingFormLabel
- 15
Vaalamo M, Karjalainen-Lindsberg M L, Puolakkainen P. et al .
Distinct expression profiles of stromelysin-2 (MMP-10), collagenase-3 (MMP-13), macrophage
metalloelastase (MMP-12), and tissue inhibitor of metalloproteinases-3 (TIMP-3) in
intestinal ulcerations.
Am J Pathol.
1998;
152
1005-1014
MissingFormLabel
- 16
Lampe von B, Barthel B, Coupland S E. et al .
Differential expression of matrix metalloproteinases and their tissue inhibitors in
colon mucosa of patients with inflammatory bowel disease.
Gut.
2000;
47
63-73
MissingFormLabel
- 17
Castaneda F E, Walia B, Vijay-Kumar M. et al .
Targeted deletion of metalloproteinase 9 attenuates experimental colitis in mice:
central role of epithelial-derived MMP.
Gastroenterology.
2005;
129
1991-2008
MissingFormLabel
- 18
Di Sebastiano P, Mola F F, Artese di L. et al .
Beneficial effects of Batimastat (BB-94), a matrix metalloproteinase inhibitor, in
rat experimental colitis.
Digestion.
2001;
63
234-239
MissingFormLabel
- 19
Sykes A P, Bhogal R, Brampton C. et al .
The effect of an inhibitor of matrix metalloproteinases on colonic inflammation in
a trinitrobenzenesulphonic acid rat model of inflammatory bowel disease.
Aliment Pharmacol Ther.
1999;
13
1535-1542
MissingFormLabel
- 20
Roeb E, Matern S.
Matrix metalloproteinases: Promoters of tumor invasion and metastasis – A review with
focus on gastrointestinal tumors.
Z Gastroenterol.
2001;
39
807-813
MissingFormLabel
- 21
Murphy G, Willenbrock F.
Tissue inhibitors of matrix metalloendopeptidases.
Methods Enzymol.
1995;
248
496-510
MissingFormLabel
- 22
Bode W, Fernandez-Catalan C, Tschesche H. et al .
Structural properties of matrix metalloproteinases.
Cell Mol Life Sci.
1999;
55
639-652
MissingFormLabel
- 23
Puente X S, Pendas A M, Llano E. et al .
Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast
carcinoma.
Cancer Res.
1996;
56
944-949
MissingFormLabel
- 24
Gururajan R, Grenet J, Lahti J M. et al .
Isolation and characterization of two novel metalloproteinase genes linked to the
Cdc2L locus on human chromosome 1 p36.3.
Genomics.
1998;
52
101-106
MissingFormLabel
- 25
Velasco G, Pendas A M, Fueyo A. et al .
Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly
expressed in reproductive tissues and lacking conserved domains in other family members.
J Biol Chem.
1999;
274
4570-4576
MissingFormLabel
- 26
Matrisian L M.
Metalloproteinases and their inhibitors in matrix remodeling.
Trends Genet.
1990;
6
121-125
MissingFormLabel
- 27
Woessner J F, Gunja-Smith Jr Z.
Role of metalloproteinases in human osteoarthritis.
J Rheumatol Suppl.
1991;
27
99-101
MissingFormLabel
- 28
Birkedal-Hansen H, Moore W G, Bodden M K. et al .
Matrix metalloproteinases: a review.
Crit Rev Oral Biol Med.
1993;
4
197-250
MissingFormLabel
- 29
Li J, Brick P, O’Hare M C. et al .
Structure of full-length porcine synovial collagenase reveals a C-terminal domain
containing a calcium-linked, four-bladed beta-propeller.
Structure.
1995;
3
541-549
MissingFormLabel
- 30
Jenne D, Stanley K K.
Nucleotide sequence and organization of the human S-protein gene: repeating peptide
motifs in the ”pexin” family and a model for their evolution.
Biochemistry.
1987;
26
6735-6742
MissingFormLabel
- 31
Gomis-Ruth F X, Gohlke U, Betz M. et al .
The helping hand of collagenase-3 (MMP-13): 2.7 A crystal structure of its C-terminal
haemopexin-like domain.
J Mol Biol.
1996;
264
556-566
MissingFormLabel
- 32
Roeb E, Schleinkofer K, Kernebeck T. et al .
The matrix metalloproteinase 9 (mmp-9) hemopexin domain is a novel gelatin binding
domain and acts as an antagonist.
J Biol Chem.
2002;
277
50326-50332
MissingFormLabel
- 33
Coignac A B, Elson de G, Delneste Y. et al .
Cloning of MMP-26. A novel matrilysin-like proteinase.
Eur J Biochem.
2000;
267
3323-3329
MissingFormLabel
- 34
Knauper V, Docherty A J, Smith B. et al .
Analysis of the contribution of the hinge region of human neutrophil collagenase (HNC,
MMP-8) to stability and collagenolytic activity by alanine scanning mutagenesis.
FEBS Lett.
1997;
405
60-64
MissingFormLabel
- 35
O’Farrell T J, Pourmotabbed T.
Identification of structural elements important for matrix metalloproteinase type
V collagenolytic activity as revealed by chimeric enzymes. Role of fibronectin-like
domain and active site of gelatinase B.
J Biol Chem.
2000;
275
27964-27972
MissingFormLabel
- 36
Redondo-Munoz J, Ugarte-Berzal E, Garcia-Marco J A. et al .
Alpha4beta1 integrin and 190-kDa CD 44v constitute a cell surface docking complex
for gelatinase B/MMP-9 in chronic leukemic but not in normal B cells.
Blood.
2008;
112
169-178
MissingFormLabel
- 37
Benbow U, Brinckerhoff C E.
The AP-1 site and MMP gene regulation: what is all the fuss about?.
Matrix Biol.
1997;
15
519-526
MissingFormLabel
- 38
Ries C, Petrides P E.
Cytokine regulation of matrix metalloproteinase activity and its regulatory dysfunction
in disease.
Biol Chem Hoppe Seyler.
1995;
376
345-355
MissingFormLabel
- 39
Carmeliet P, Moons L, Lijnen R. et al .
Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation.
Nat Genet.
1997;
17
439-444
MissingFormLabel
- 40
Duncan M E, Richardson J P, Murray G I. et al .
Human matrix metalloproteinase-9: activation by limited trypsin treatment and generation
of monoclonal antibodies specific for the activated form.
Eur J Biochem.
1998;
258
37-43
MissingFormLabel
- 41
Lijnen H R.
Matrix metalloproteinases and cellular fibrinolytic activity.
Biochemistry.
2002;
67
92-98
MissingFormLabel
- 42
Moilanen M, Sorsa T, Stenman M. et al .
Tumor-associated trypsinogen-2 (trypsinogen-2) activates procollagenases (MMP-1, -8,
-3) and stromelysin-1 (MMP-3) and degrades type I collagen.
Biochemistry.
2003;
42
5414-5420
MissingFormLabel
- 43
Okada Y, Harris E D, Nagase Jr H.
The precursor of a metalloendopeptidase from human rheumatoid synovial fibroblasts.
Purification and mechanisms of activation by endopeptidases and 4-aminophenylmercuric
acetate.
Biochem J.
1988;
254
731-741
MissingFormLabel
- 44
Ramos-DeSimone N, Hahn-Dantona E, Sipley J. et al .
Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1
cascade enhances tumor cell invasion.
J Biol Chem.
1999;
274
13 066-13 076
MissingFormLabel
- 45
Bernardo M M, Fridman R.
TIMP-2 (tissue inhibitor of metalloproteinase-2) regulates MMP-2 (matrix metalloproteinase-2)
activity in the extracellular environment after pro-MMP-2 activation by MT 1 (membrane
type 1)-MMP.
Biochem J.
2003;
374
739-745
MissingFormLabel
- 46
Fridman R, Toth M, Pena D. et al .
Activation of progelatinase B (MMP-9) by gelatinase A (MMP-2).
Cancer Res.
1995;
55
2548-2555
MissingFormLabel
- 47
Imai K, Yokohama Y, Nakanishi I. et al .
Matrix metalloproteinase 7 (matrilysin) from human rectal carcinoma cells. Activation
of the precursor, interaction with other matrix metalloproteinases and enzymic properties.
J Biol Chem.
1995;
270
6691-6697
MissingFormLabel
- 48
Murphy G, Knauper V.
Relating matrix metalloproteinase structure to function: why the ”hemopexin” domain?.
Matrix Biol.
1997;
15
511-518
MissingFormLabel
- 49
Ogata Y, Enghild J J, Nagase H.
Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix
metalloproteinase 9.
J Biol Chem.
1992;
267
3581-3584
MissingFormLabel
- 50
Opdenakker G, Van den Steen P E, Dubois B. et al .
Gelatinase B functions as regulator and effector in leukocyte biology.
J Leukoc Biol.
2001;
69
851-859
MissingFormLabel
- 51
Pirila E, Ramamurthy N S, Sorsa T. et al .
Gelatinase A (MMP-2), collagenase-2 (MMP-8), and laminin-5 gamma2-chain expression
in murine inflammatory bowel disease (ulcerative colitis).
Dig Dis Sci.
2003;
48
93-98
MissingFormLabel
- 52
Sorsa T, Uitto V J, Suomalainen K. et al .
Comparison of interstitial collagenases from human gingiva, sulcular fluid and polymorphonuclear
leukocytes.
J Periodontal Res.
1988;
23
386-393
MissingFormLabel
- 53
Knauper V, Lopez-Otin C, Smith B. et al .
Biochemical characterization of human collagenase-3.
J Biol Chem.
1996;
271
1544-1550
MissingFormLabel
- 54
Daum S, Bauer U, Foss H D. et al .
Increased expression of mRNA for matrix metalloproteinases-1 and -3 and tissue inhibitor
of metalloproteinases-1 in intestinal biopsy specimens from patients with coeliac
disease.
Gut.
1999;
44
17-25
MissingFormLabel
- 55
Otani Y, Sakurai Y, Kameyama K. et al .
Matrix metalloproteinase gene expression in chronic gastric ulcer: a potential role
of eosinophils in perforation.
J Clin Gastroenterol.
1997;
25 (Suppl 1)
S101-S104
MissingFormLabel
- 56
Wang H, Keiser J A.
Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases
in vascular smooth muscle cells: role of flt-1.
Circ Res.
1998;
83
832-840
MissingFormLabel
- 57
Vaalamo M, Weckroth M, Puolakkainen P. et al .
Patterns of matrix metalloproteinase and TIMP-1 expression in chronic and normally
healing human cutaneous wounds.
Br J Dermatol.
1996;
135
52-59
MissingFormLabel
- 58
Opdenakker G.
New insights in the regulation of leukocytosis and the role played by leukocytes in
septic shock.
Verh K Acad Geneeskd Belg.
2001;
63
531-538
MissingFormLabel
- 59
Van Lint P, Wielockx B, Puimege L. et al .
Resistance of collagenase-2 (matrix metalloproteinase-8)-deficient mice to TNF-induced
lethal hepatitis.
J Immunol.
2005;
175
7642-7649
MissingFormLabel
- 60
Hanemaaijer R, Sorsa T, Konttinen Y T. et al .
Matrix metalloproteinase-8 is expressed in rheumatoid synovial fibroblasts and endothelial
cells. Regulation by tumor necrosis factor-alpha and doxycycline.
J Biol Chem.
1997;
272
31504-31509
MissingFormLabel
- 61
Bode W, Reinemer P, Huber R. et al .
The X-ray crystal structure of the catalytic domain of human neutrophil collagenase
inhibited by a substrate analogue reveals the essentials for catalysis and specificity.
EMBO J.
1994;
13
1263-1269
MissingFormLabel
- 62
Bode W.
A helping hand for collagenases: the haemopexin-like domain.
Structure.
1995;
3
527-530
MissingFormLabel
- 63
Lovejoy B, Welch A R, Carr S. et al .
Crystal structures of MMP-1 and -13 reveal the structural basis for selectivity of
collagenase inhibitors.
Nat Struct Biol.
1999;
6
217-221
MissingFormLabel
- 64
Rath T, Roderfeld M, Graf J. et al .
Enhanced expression of MMP-7 and MMP-13 in inflammatory bowel disease: a precancerous
potential?.
Inflamm Bowel Dis.
2006;
12
1025-1035
MissingFormLabel
- 65
Roeb E, Arndt M, Jansen B. et al .
Simultaneous determination of matrix metalloproteinase (MMP)-7, MMP-1, -3, and -13
gene expression by multiplex PCR in colorectal carcinomas.
Int J Colorectal Dis.
2004;
19
518-524
MissingFormLabel
- 66
Airola K, Karonen T, Vaalamo M. et al .
Expression of collagenases-1 and -3 and their inhibitors TIMP-1 and -3 correlates
with the level of invasion in malignant melanomas.
Br J Cancer.
1999;
80
733-743
MissingFormLabel
- 67
Heppner K J, Matrisian L M, Jensen R A. et al .
Expression of most matrix metalloproteinase family members in breast cancer represents
a tumor-induced host response.
Am J Pathol.
1996;
149
273-282
MissingFormLabel
- 68
Leeman M F, McKay J A, Murray G I.
Matrix metalloproteinase 13 activity is associated with poor prognosis in colorectal
cancer.
J Clin Pathol.
2002;
55
758-762
MissingFormLabel
- 69
Ilvesaro J M, Merrell M A, Swain T M. et al .
Toll like receptor-9 agonists stimulate prostate cancer invasion in vitro.
Prostate.
2007;
67
774-781
MissingFormLabel
- 70
Merrell M A, Ilvesaro J M, Lehtonen N. et al .
Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloproteinase
activity.
Mol Cancer Res.
2006;
4
437-447
MissingFormLabel
- 71
Cawston T E.
Metalloproteinase inhibitors and the prevention of connective tissue breakdown.
Pharmacol Ther.
1996;
70
163-182
MissingFormLabel
- 72
Banyai L, Tordai H, Patthty L.
Structure and domain-domain interactions of the gelatin binding site of human 72-kilodalton
type IV collagenase (gelatinase A, matrix metalloproteinase 2).
J Biol Chem.
1996;
271
12003-12008
MissingFormLabel
- 73
Garg P, Rojas M, Ravi A. et al .
Selective ablation of matrix metalloproteinase-2 exacerbates experimental colitis:
contrasting role of gelatinases in the pathogenesis of colitis.
J Immunol.
2006;
177
4103-4112
MissingFormLabel
- 74
Cao J, Drews M, Lee H M. et al .
The propeptide domain of membrane type 1 matrix metalloproteinase is required for
binding of tissue inhibitor of metalloproteinases and for activation of pro-gelatinase
A.
J Biol Chem.
1998;
273
34745-34752
MissingFormLabel
- 75
Okada A, Tomasetto C, Lutz Y. et al .
Expression of matrix metalloproteinases during rat skin wound healing: evidence that
membrane type-1 matrix metalloproteinase is a stromal activator of pro-gelatinase
A.
J Cell Biol.
1997;
137
67-77
MissingFormLabel
- 76
Strongin A Y, Collier I, Bannikov G. et al .
Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the
activated form of the membrane metalloprotease.
J Biol Chem.
1995;
270
5331-5338
MissingFormLabel
- 77
Nagase H.
Activation mechanisms of matrix metalloproteinases.
Biol Chem.
1997;
378
151-160
MissingFormLabel
- 78
Basset P, Okada A, Chenard M P. et al .
Matrix metalloproteinases as stromal effectors of human carcinoma progression: therapeutic
implications.
Matrix Biol.
1997;
15
535-541
MissingFormLabel
- 79
Makela M, Larjava H, Pirila E. et al .
Matrix metalloproteinase 2 (gelatinase A) is related to migration of keratinocytes.
Exp Cell Res.
1999;
251
67-78
MissingFormLabel
- 80
Turck J, Pollock A S, Lee L K. et al .
Matrix metalloproteinase 2 (gelatinase A) regulates glomerular mesangial cell proliferation
and differentiation.
J Biol Chem.
1996;
271
15074-15083
MissingFormLabel
- 81
Xue M, Le N T, Jackson C J.
Targeting matrix metalloproteases to improve cutaneous wound healing.
Expert Opin Ther Targets.
2006;
10
143-155
MissingFormLabel
- 82
Lechapt-Zalcman E, Pruliere-Escabasse V, Advenier D. et al .
Transforming growth factor-beta1 increases airway wound repair via MMP-2 upregulation:
a new pathway for epithelial wound repair?.
Am J Physiol Lung Cell Mol Physiol.
2006;
290
L1277-L1282
MissingFormLabel
- 83
Kirkegaard T, Hansen A, Bruun E. et al .
Expression and localisation of matrix metalloproteinases and their natural inhibitors
in fistulae of patients with Crohn’s disease.
Gut.
2004;
53
701-709
MissingFormLabel
- 84
Kaur K, Zhu K, Whittemore M S. et al .
Identification of the active site of gelatinase B as the structural element sufficient
for converting a protein to a metalloprotease.
Biochemistry.
2002;
41
4789-4797
MissingFormLabel
- 85
Atkinson J J, Senior R M.
Matrix metalloproteinase-9 in lung remodeling.
Am J Respir Cell Mol Biol.
2003;
28
12-24
MissingFormLabel
- 86
Opdenakker G, Van den Steen P E, Van Damme J.
Gelatinase B: a tuner and amplifier of immune functions.
Trends Immunol.
2001;
22
571-579
MissingFormLabel
- 87
Roeb E, Dietrich C G, Winograd R. et al .
Activity and cellular origin of gelatinases in patients with colon and rectal carcinoma
differential activity of matrix metalloproteinase-9.
Cancer.
2001;
92
2680-2691
MissingFormLabel
- 88
Liabakk N B, Talbot I, Smith R A. et al .
Matrix metalloprotease 2 (MMP-2) and matrix metalloprotease 9 (MMP-9) type IV collagenases
in colorectal cancer.
Cancer Res.
1996;
56
190-196
MissingFormLabel
- 89
Baugh M D, Evans G S, Hollander A P. et al .
Expression of matrix metalloproteases in inflammatory bowel disease.
Ann N Y Acad Sci.
1998;
859
249-253
MissingFormLabel
- 90
Tarlton J F, Whiting C V, Tunmore D. et al .
The role of up-regulated serine proteases and matrix metalloproteinases in the pathogenesis
of a murine model of colitis.
Am J Pathol.
2000;
157
1927-1935
MissingFormLabel
- 91
Manfredi M A, Zurakowski D, Rufo P A. et al .
Increased incidence of urinary matrix metalloproteinases as predictors of disease
in pediatric patients with inflammatory bowel disease.
Inflamm Bowel Dis.
2008;
14
1091-1096
MissingFormLabel
- 92
Medina C, Videla S, Radomski A. et al .
Increased activity and expression of matrix metalloproteinase-9 in a rat model of
distal colitis.
Am J Physiol Gastrointest Liver Physiol.
2003;
284
G116-G122
MissingFormLabel
- 93
Medina C, Santana A, Paz M C. et al .
Matrix metalloproteinase-9 modulates intestinal injury in rats with transmural colitis.
J Leukoc Biol.
2006;
79
954-962
MissingFormLabel
- 94
Fini M E, Parks W C, Rinehart W B. et al .
Role of matrix metalloproteinases in failure to re-epithelialize after corneal injury.
Am J Pathol.
1996;
149
1287-1302
MissingFormLabel
- 95
Mohan R, Chintala S K, Jung J C. et al .
Matrix metalloproteinase gelatinase B (MMP-9) coordinates and effects epithelial regeneration.
J Biol Chem.
2002;
277
2065-2072
MissingFormLabel
- 96
Alexander J S, Elrod J W.
Extracellular matrix, junctional integrity and matrix metalloproteinase interactions
in endothelial permeability regulation.
J Anat.
2002;
200
561-574
MissingFormLabel
- 97
Behzadian M A, Wang X L, Windsor L J. et al .
TGF-beta increases retinal endothelial cell permeability by increasing MMP-9: possible
role of glial cells in endothelial barrier function.
Invest Ophthalmol Vis Sci.
2001;
42
853-859
MissingFormLabel
- 98
Scott K A, Arnott C H, Robinson S C. et al .
TNF-alpha regulates epithelial expression of MMP-9 and integrin alphavbeta6 during
tumour promotion. A role for TNF-alpha in keratinocyte migration?.
Oncogene.
2004;
23
6954-6966
MissingFormLabel
- 99
Van den Steen P E, Proost P, Wuyts A. et al .
Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing,
whereas it degrades CTAP-III, PF-4, and GRO-alpha and leaves RANTES and MCP-2 intact.
Blood.
2000;
96
2673-2681
MissingFormLabel
- 100
Matsubara M, Zieske J D, Fini M E.
Mechanism of basement membrane dissolution preceding corneal ulceration.
Invest Ophthalmol Vis Sci.
1991;
32
3221-3237
MissingFormLabel
- 101
Stetler-Stevenson W G, Krutzsch H C, Wacher M P. et al .
The activation of human type IV collagenase proenzyme. Sequence identification of
the major conversion product following organomercurial activation.
J Biol Chem.
1989;
264
1353-1356
MissingFormLabel
- 102
Breathnach R, Matrisian L M, Gesnel M C. et al .
Sequences coding for part of oncogene-induced transin are highly conserved in a related
rat gene.
Nucleic Acids Res.
1987;
15
1139-1151
MissingFormLabel
- 103
Fu L, Ishizuya-Oka A, Buchholz D R. et al .
A causative role of stromelysin-3 in extracellular matrix remodeling and epithelial
apoptosis during intestinal metamorphosis in Xenopus laevis.
J Biol Chem.
2005;
280
27856-27865
MissingFormLabel
- 104
Pendas A M, Knauper V, Puente X S. et al .
Identification and characterization of a novel human matrix metalloproteinase with
unique structural characteristics, chromosomal location, and tissue distribution.
J Biol Chem.
1997;
272
4281-4286
MissingFormLabel
- 105
Saarialho-Kere U K, Pentland A P, Birkedal-Hansen H. et al .
Distinct populations of basal keratinocytes express stromelysin-1 and stromelysin-2
in chronic wounds.
J Clin Invest.
1994;
94
79-88
MissingFormLabel
- 106
Li C K, Pender S L, Pickard K M. et al .
Impaired immunity to intestinal bacterial infection in stromelysin-1 (matrix metalloproteinase-3)-deficient
mice.
J Immunol.
2004;
173
5171-5179
MissingFormLabel
- 107
Gordon J N, Pickard K M, Di Sabatino A. et al .
Matrix metalloproteinase-3 production by gut IgG plasma cells in chronic inflammatory
bowel disease.
Inflamm Bowel Dis.
2008;
14
195-203
MissingFormLabel
- 108
Pender S L, Croucher P J, Mascheretti S. et al .
Transmission disequilibrium test of stromelysin-1 gene variation in relation to Crohn’s
disease.
J Med Genet.
2004;
41
e112
MissingFormLabel
- 109
Welgus H G.
Stromelysin: structure and function.
Agents Actions Suppl.
1991;
35
61-67
MissingFormLabel
- 110
Zhang K, Kramer R H.
Laminin 5 deposition promotes keratinocyte motility.
Exp Cell Res.
1996;
227
309-322
MissingFormLabel
- 111
Airola K, Reunala T, Salo S. et al .
Urokinase plasminogen activator is expressed by basal keratinocytes before interstitial
collagenase, stromelysin-1, and laminin-5 in experimentally induced dermatitis herpetiformis
lesions.
J Invest Dermatol.
1997;
108
7-11
MissingFormLabel
- 112
Madlener M, Mauch C, Conca W. et al .
Regulation of the expression of stromelysin-2 by growth factors in keratinocytes:
implications for normal and impaired wound healing.
Biochem J.
1996;
320 (Pt 2)
659-664
MissingFormLabel
- 113
Newell K J, Witty J P, Rodgers W H. et al .
Expression and localization of matrix-degrading metalloproteinases during colorectal
tumorigenesis.
Mol Carcinog.
1994;
10
199-206
MissingFormLabel
- 114
Visse R, Nagase H.
Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure,
function, and biochemistry.
Circ Res.
2003;
92
827-839
MissingFormLabel
- 115
Wilson C L, Matrisian L M.
Matrilysin: an epithelial matrix metalloproteinase with potentially novel functions.
Int J Biochem Cell Biol.
1996;
28
123-136
MissingFormLabel
- 116
Miyazaki K, Hattori Y, Umenishi F. et al .
Purification and characterization of extracellular matrix-degrading metalloproteinase,
matrin (pump-1), secreted from human rectal carcinoma cell line.
Cancer Res.
1990;
50
7758-7764
MissingFormLabel
- 117
Wielockx B, Libert C, Wilson C.
Matrilysin (matrix metalloproteinase-7): a new promising drug target in cancer and
inflammation?.
Cytokine Growth Factor Rev.
2004;
15
111-115
MissingFormLabel
- 118
Salmela M T, Pender S L, Karjalainen-Lindsberg M L. et al .
Collagenase-1 (MMP-1), matrilysin-1 (MMP-7), and stromelysin-2 (MMP-10) are expressed
by migrating enterocytes during intestinal wound healing.
Scand J Gastroenterol.
2004;
39
1095-1104
MissingFormLabel
- 119
Matsuno K, Adachi Y, Yamamoto H. et al .
The expression of matrix metalloproteinase matrilysin indicates the degree of inflammation
in ulcerative colitis.
J Gastroenterol.
2003;
38
348-354
MissingFormLabel
- 120
Parks W C.
Matrix metalloproteinases in repair.
Wound Repair Regen.
1999;
7
423-432
MissingFormLabel
- 121
Wilson C L, Ouellette A J, Satchell D P. et al .
Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin
in innate host defense.
Science.
1999;
286
113-117
MissingFormLabel
- 122
Adachi Y, Yamamoto H, Itoh F. et al .
Contribution of matrilysin (MMP-7) to the metastatic pathway of human colorectal cancers.
Gut.
1999;
45
252-258
MissingFormLabel
- 123
Masaki T, Matsuoka H, Sugiyama M. et al .
Matrilysin (MMP-7) as a significant determinant of malignant potential of early invasive
colorectal carcinomas.
Br J Cancer.
2001;
84
1317-1321
MissingFormLabel
- 124
Newell K J, Matrisian L M, Driman D K.
Matrilysin (matrix metalloproteinase-7) expression in ulcerative colitis-related tumorigenesis.
Mol Carcinog.
2002;
34
59-63
MissingFormLabel
- 125
Shapiro S D, Kobayashi D K, Ley T J.
Cloning and characterization of a unique elastolytic metalloproteinase produced by
human alveolar macrophages.
J Biol Chem.
1993;
268
23824-23829
MissingFormLabel
- 126
Shipley J M, Wesselschmidt R L, Kobayashi D K. et al .
Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion
in mice.
Proc Natl Acad Sci U S A.
1996;
93
3942-3946
MissingFormLabel
- 127
Benyon R C, Arthur M J.
Extracellular matrix degradation and the role of hepatic stellate cells.
Semin Liver Dis.
2001;
21
373-384
MissingFormLabel
- 128
Udayakumar T S, Chen M L, Bair E L. et al .
Membrane type-1-matrix metalloproteinase expressed by prostate carcinoma cells cleaves
human laminin-5 beta3 chain and induces cell migration.
Cancer Res.
2003;
63
2292-2299
MissingFormLabel
- 129
Ravanti L, Kahari V M.
Matrix metalloproteinases in wound repair (review).
Int J Mol Med.
2000;
6
391-407
MissingFormLabel
- 130
Malhotra S, Newman E, Eisenberg D. et al .
Increased membrane type 1 matrix metalloproteinase expression from adenoma to colon
cancer: a possible mechanism of neoplastic progression.
Dis Colon Rectum.
2002;
45
537-543
MissingFormLabel
- 131
Gomez D E, Alonso D F, Yoshiji H. et al .
Tissue inhibitors of metalloproteinases: structure, regulation and biological functions.
Eur J Cell Biol.
1997;
74
111-122
MissingFormLabel
- 132
Kasahara A, Hayashi N, Mochizuki K. et al .
Circulating matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1
as serum markers of fibrosis in patients with chronic hepatitis C. Relationship to
interferon response.
J Hepatol.
1997;
26
574-583
MissingFormLabel
- 133
O’Connell J P, Willenbrock F, Docherty A J. et al .
Analysis of the role of the COOH-terminal domain in the activation, proteolytic activity,
and tissue inhibitor of metalloproteinase interactions of gelatinase B.
J Biol Chem.
1994;
269
14967-14973
MissingFormLabel
- 134
Roeb E, Graeve L, Hoffmann R. et al .
Regulation of tissue inhibitor of metalloproteinases-1 gene expression by cytokines
and dexamethasone in rat hepatocyte primary cultures.
Hepatology.
1993;
18
1437-1442
MissingFormLabel
- 135
Gatsios P, Haubeck H D, LE. et al .
Oncostatin M differentially regulates tissue inhibitors of metalloproteinases TIMP-1
and TIMP-3 gene expression in human synovial lining cells.
Eur J Biochem.
1996;
241
56-63
MissingFormLabel
- 136
Medina C, Radomski M W.
Role of matrix metalloproteinases in intestinal inflammation.
J Pharmacol Exp Ther.
2006;
318
933-938
MissingFormLabel
- 137
Louis E, Ribbens C, Godon A. et al .
Increased production of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1
by inflamed mucosa in inflammatory bowel disease.
Clin Exp Immunol.
2000;
120
241-246
MissingFormLabel
- 138
Naito Y, Yoshikawa T.
Role of matrix metalloproteinases in inflammatory bowel disease.
Mol Aspects Med.
2005;
26
379-390
MissingFormLabel
- 139
Meijer M J, Mieremet-Ooms M A, Sier C F. et al .
Matrix metalloproteinases and their tissue inhibitors as prognostic indicators for
diagnostic and surgical recurrence in Crohn’s disease.
Inflamm Bowel Dis.
2009;
15
84-92
MissingFormLabel
- 140
McKaig B C, McWilliams D, Watson S A. et al .
Expression and regulation of tissue inhibitor of metalloproteinase-1 and matrix metalloproteinases
by intestinal myofibroblasts in inflammatory bowel disease.
Am J Pathol.
2003;
162
1355-1360
MissingFormLabel
- 141
Di Sabatino A, Pender S L, Jackson C L. et al .
Functional modulation of Crohn’s disease myofibroblasts by anti-tumor necrosis factor
antibodies.
Gastroenterology.
2007;
133
137-149
MissingFormLabel
- 142
Hemmann S, Graf J, Roderfeld M. et al .
Expression of MMPs and TIMPs in liver fibrosis – a systematic review with special
emphasis on anti-fibrotic strategies.
J Hepatol.
2007;
46
955-975
MissingFormLabel
- 143 De Lano W L. The PyMOL User’s Manual. San Carlos, CA, USA; 2002
MissingFormLabel
- 144
Ravi A, Garg P, Sitaraman S V.
Matrix metalloproteinases in inflammatory bowel disease: boon or a bane?.
Inflamm Bowel Dis.
2007;
13
97-107
MissingFormLabel
- 145
Baricos W H, Murphy G, Zhou Y W. et al .
Degradation of glomerular basement membrane by purified mammalian metalloproteinases.
Biochem J.
1988;
254
609-612
MissingFormLabel
- 146
Murphy G, Cockett M I, Ward R V. et al .
Matrix metalloproteinase degradation of elastin, type IV collagen and proteoglycan.
A quantitative comparison of the activities of 95 kDa and 72 kDa gelatinases, stromelysins-1
and -2 and punctuated metalloproteinase (PUMP).
Biochem J.
1991;
277 (Pt 1)
277-279
MissingFormLabel
- 147
Nguyen Q, Murphy G, Roughley P J. et al .
Degradation of proteoglycan aggregate by a cartilage metalloproteinase. Evidence for
the involvement of stromelysin in the generation of link protein heterogeneity in
situ.
Biochem J.
1989;
259
61-67
MissingFormLabel
- 148
Okada Y, Nakanishi I.
Activation of matrix metalloproteinase 3 (stromelysin) and matrix metalloproteinase
2 (‘gelatinase’) by human neutrophil elastase and cathepsin G.
FEBS Lett.
1989;
249
353-356
MissingFormLabel
- 149
Chandler S, Cossins J, Lury J. et al .
Macrophage metalloelastase degrades matrix and myelin proteins and processes a tumour
necrosis factor-alpha fusion protein.
Biochem Biophys Res Commun.
1996;
228
421-429
MissingFormLabel
- 150
Gronski Jr T J, Martin R L, Kobayashi D K. et al .
Hydrolysis of a broad spectrum of extracellular matrix proteins by human macrophage
elastase.
J Biol Chem.
1997;
272
12189-12194
MissingFormLabel
Prof. Dr. Elke Roeb
Zentrum für Innere Medizin, Gastroenterologie, Justus-Liebig-Universität
Paul-Meimberg-Str. 5
35385 Gießen
Telefon: ++ 49/6 41/9 94 23 38
Fax: ++ 49/6 41/9 94 23 39
eMail: elke.roeb@innere.med.uni-giessen.de