Zusammenfassung
Ziel: Untersuchung eines 3 D-Oberflächenmodells des linken Ventrikels (LV), welches die Berechnung von LV-Funktionsparametern anhand kurzer (KA) und langer Achsen (LA) ermöglicht. Vergleich mit herkömmlicher Simpson-Methode bei gesunden Probanden und in einem Patientenkollektiv. Material und Methoden: Cine-Bildgebung erfolgte mit einer prospektiv getriggerten SSFP-Sequenz: trueFISP: TR 3,6 ms, TE 1,8 ms, bFFE: TR 3,0 ms, TE 1,4 ms, Flipwinkel 60°, Auflösung 1,37 × 1,37 mm, Schichtdicke 8 mm, Schichtabstand 2 mm in KA-Orientierung von Apex bis Basis sowie in radialer LA-Orientierung (Rotationswinkel 15°) bei 11 gesunden Probanden und 27 Patienten mit Mitralklappeninsuffizienz. Das 3 D-Modell wurde an die manuell segmentierten Konturen angepasst. Fünf unterschiedliche Volumenberechnungsmethoden wurden verglichen: Simpson-Methode basierend auf alle KA (M0), 3 D-Oberflächenmodell basierend auf alle KA (M1a), 3 D-Oberflächenmodell basierend auf 3 KA (M1b), 3 D-Oberflächenmodell basierend auf alle KA und LA (M2a) und 3 D-Oberflächenmodell basierend auf 3 KA und 1 LA (M2b). Ergebnisse: M 0 und M 1a ergeben vergleichbare Ergebnisse (r: 0,99, b: 0,98). M 2a resultiert in größeren Volumina als M 0 aufgrund der Einbeziehung der LA-Konturen (b: 0,85). M 1b erzielt vergleichbare Volumina wie M 0 (r: 0,99, b: 1,02). M 2b erzielt vergleichbare Volumina wie M 2a (r: 0,99, b: 0,94). M 2b und M 0 ergeben vergleichbare Ergebnisse in dem Patientenkollektiv (r: 0,99, b: 0,97). Schlussfolgerung: Das vorgestellte 3D-Oberflächenmodell ermöglicht die Berücksichtigung von Konturinformationen, welche in unterschiedlichen Ebenen akquiriert wurden und deckt den linken Ventrikel durch Kombination von KA und LA genauer ab. Selbst mit einer reduzierten Anzahl segmentierter Konturen kann eine ausreichend genaue Oberflächenanpassung erfolgen.
Abstract
Purpose: To evaluate a 3D model of the left ventricle (LV) which allows calculation of LV function parameters on the basis of both short axis (SA) and long axis (LA) cine acquisitions. Comparison with the conventional Simpson’s rule method in a volunteer and patient collective. Materials and Methods: Cine imaging was performed with a prospectively triggered SSFP sequence: trueFISP: TR 3.6 msec, TE 1.8 msec, bFFE: TR 3.0 msec, TE 1.4 msec, flip angle 60°, resolution 1.37 × 1.37 mm, slice thickness 8 mm, gap 2 mm in SA orientation from apex to basis and in radial LA orientation (spacing 15°) in 11 volunteers and 27 patients with mitral valve insufficiency. Five different volume computations were compared: Simpson’s rule based on all SA slices (M0), 3D shape model based on all SA slices (M1a), 3D shape model based on 3 SA slices (M1b), 3D shape model based on all SA and LA slices (M2a), and 3D shape model based on 3 SA slices and 1 LA slice (M2b). Results: M 0 and M 1a give similar results (r: 0.99, b: 0.98). M 2a produces larger volumes than M 0 (b: 0.85) due to the inclusion of the LA contours. M 1b effectively reproduces the volumes computed with M 0 (r: 0.99, b: 1.02). M 2b effectively reproduces the volumes computed with M 2a (r: 0.99, b: 0.94). M 2b and M 0 give similar results in the patient collective (r: 0.99, b: 0.97). Conclusion: The proposed 3D shape model allows merging of information acquired in different orientations and thus the combination of SA and LA contours with better coverage of the left ventricle. It provides a suitable fit with a reduced number of segmented contours.
Key words
cardiac - anatomy - MR imaging
References
1
Koren M J, Devereux R B, Casale P N. et al .
Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension.
Ann Intern Med.
1991;
114
345-352
2
Levy D, Garrison R J, Savage D D. et al .
Left ventricular mass and incidence of coronary heart disease in an elderly cohort. The Framingham Heart Study.
Ann Intern Med.
1989;
110
101-107
3
Levy D, Garrison R J, Savage D D. et al .
Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study.
N Engl J Med.
1990;
322
1561-1566
4
White H D, Norris R M, Brown M A. et al .
Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction.
Circulation.
1987;
76
44-51
5
Carabello B A.
Evolution of the study of left ventricular function: everything old is new again.
Circulation.
2002;
105
2701-2703
6
Pattynama P M, Lamb H J, Velde E A. et al .
Left ventricular measurements with cine and spin-echo MR imaging: a study of reproducibility with variance component analysis.
Radiology.
1993;
187
261-268
7
Dulce M C, Mostbeck G H, Friese K K. et al .
Quantification of the left ventricular volumes and function with cine MR imaging: comparison of geometric models with three-dimensional data.
Radiology.
1993;
188
371-376
8
Aurigemma van der G, Davidoff A, Silver K. et al .
Left ventricular mass quantitation using single-phase cardiac magnetic resonance imaging.
Am J Cardiol.
1992;
70
259-262
9
Sakuma H, Fujita N, Foo T K. et al .
Evaluation of left ventricular volume and mass with breath-hold cine MR imaging.
Radiology.
1993;
188
377-380
10
Semelka R C, Tomei E, Wagner S. et al .
Normal left ventricular dimensions and function: interstudy reproducibility of measurements with cine MR imaging.
Radiology.
1990;
174
763-768
11
Weiss J L, Shapiro E P, Buchalter M B. et al .
Magnetic resonance imaging as a noninvasive standard for the quantitative evaluation of left ventricular mass, ischemia, and infarction.
Ann N Y Acad Sci.
1990;
601
95-106
12
Lorenz C H.
The range of normal values of cardiovascular structures in infants, children, and adolescents measured by magnetic resonance imaging.
Pediatr Cardiol.
2000;
21
37-46
13
Lorenz C H, Walker E S, Morgan V L. et al .
Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging.
J Cardiovasc Magn Reson.
1999;
1
7-21
14
Rominger M B, Bachmann G F, Pabst W. et al .
Left ventricular heart volume determination with fast MRI in breath holding technique: how different are quantitative heart catheter, quantitative MRI and visual echocardiography?.
Fortschr Röntgenstr.
2000;
172
23-32
15
Rominger M B, Bachmann G F, Geuer M. et al .
Comparison of left and right ventricular ejection and filling parameters of the heart using cine-MRI with breath holding technique. Clinical study of 42 patients with cardiomyopathy and coronary heart disease.
Fortschr Röntgenstr.
1999;
170
534-541
16
Bloomer T N, Plein S, Radjenovic A. et al .
Cine MRI using steady state free precession in the radial long axis orientation is a fast accurate method for obtaining volumetric data of the left ventricle.
J Magn Reson Imaging.
2001;
14
685-692
17
Debatin J F, Nadel S N, Sostman H D. et al .
Magnetic resonance imaging – cardiac ejection fraction measurements. Phantom study comparing four different methods.
Invest Radiol.
1992;
27
198-204
18
Bloomgarden D C, Fayad Z A, Ferrari V A. et al .
Global cardiac function using fast breath-hold MRI: validation of new acquisition and analysis techniques.
Magn Reson Med.
1997;
37
683-692
19
Katz J, Milliken M C, Stray-Gundersen J. et al .
Estimation of human myocardial mass with MR imaging.
Radiology.
1988;
169
495-498
20
Clay S, Alfakih K, Radjenovic A. et al .
Normal range of human left ventricular volumes and mass using steady state free precession MRI in the radial long axis orientation.
MAGMA.
2006;
19
41-45
21
Swingen C, Wang X, Jerosch-Herold M.
Evaluation of myocardial volume heterogeneity during end-diastole and end-systole using cine MRI.
J Cardiovasc Magn Reson.
2004;
6
829-835
22
Kirschbaum S W, Baks T, Gronenschild E H. et al .
Addition of the long-axis information to short-axis contours reduces interstudy variability of left-ventricular analysis in cardiac magnetic resonance studies.
Invest Radiol.
2008;
43
1-6
23
Marcus J T, Gotte M J, DeWaal L K. et al .
The influence of through-plane motion on left ventricular volumes measured by magnetic resonance imaging: implications for image acquisition and analysis.
J Cardiovasc Magn Reson.
1999;
1
1-6
24
Frangi A F, Niessen W J, Viergever M A.
Three-dimensional modeling for functional analysis of cardiac images: a review.
IEEE Trans Med Imaging.
2001;
20
2-25
25
Matheny A, Goldgof D B.
The Use of Three- and Four-Dimensional Surface Harmonics for Rigid and Nonrigid Shape Recovery and Representation.
IEEE Transactions on Pattern Analysis and Machine Analysis.
1995;
17
967-981
26
Rehr R B, Malloy C R, Filipchuk N G. et al .
Left ventricular volumes measured by MR imaging.
Radiology.
1985;
156
717-719
27
Papavassiliu T, Kuhl H P, Dockum van W. et al .
Accuracy of one- and two-dimensional algorithms with optimal image plane position for the estimation of left ventricular mass: a comparative study using magnetic resonance imaging.
J Cardiovasc Magn Reson.
2004;
6
845-854
28
Danias P G, Chuang M L, Parker R A. et al .
Relation between the number of image planes and the accuracy of three-dimensional echocardiography for measuring left ventricular volumes and ejection fraction.
Am J Cardiol.
1998;
82
1431-1434
29
Verdecchia P, Schillaci G, Borgioni C. et al .
Prognostic significance of serial changes in left ventricular mass in essential hypertension.
Circulation.
1998;
97
48-54
30
Torp-Pedersen C, Kober L.
Effect of ACE inhibitor trandolapril on life expectancy of patients with reduced left-ventricular function after acute myocardial infarction. TRACE Study Group. Trandolapril Cardiac Evaluation.
Lancet.
1999;
354
9-12
31
Konstam M A, Rousseau M F, Kronenberg M W. et al .
Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dysfunction in patients with heart failure. SOLVD Investigators.
Circulation.
1992;
86
431-438
32
Fieno D S, Hillenbrand H B, Rehwald W G. et al .
Infarct resorption, compensatory hypertrophy, and differing patterns of ventricular remodeling following myocardial infarctions of varying size.
J Am Coll Cardiol.
2004;
43
2124-2131
33
Schroeder A P, Houlind K, Pedersen E M. et al .
Serial magnetic resonance imaging of global and regional left ventricular remodeling during 1 year after acute myocardial infarction.
Cardiology.
2001;
96
106-114
34
Saeed M, Lee R J, Weber O. et al .
Scarred myocardium imposes additional burden on remote viable myocardium despite a reduction in the extent of area with late contrast MR enhancement.
Eur Radiol.
2006;
16
827-836
35
Niendorf T, Sodickson D K.
Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications.
Eur Radiol.
2008;
18
87-102
36
Wintersperger B J, Sincleair S, Runge V M. et al .
Dual breath-hold magnetic resonance cine evaluation of global and regional cardiac function.
Eur Radiol.
2007;
17
73-80
37
Niendorf T, Sodickson D.
Acceleration of cardiovascular MRI using parallel imaging: basic principles, practical considerations, clinical applications and future directions.
Fortschr Röntgenstr.
2006;
178
15-30
38
Sénégas J, Bansmann P M, Stork A.
Assessment of cardiac function with a three-dimensional shape model based on surface harmonics.
Proc Int Soc Magn Reson Med.
2006;
14
847
39
Berg J, Lorenz C H.
Towards a Comprehensive Geometric Model of the Heart.
Lecture Notes in Computer Science.
2005;
3504
102-112
Dr. Paul Martin Bansmann
KardioMR Köln/Bonn, Krankenhaus Porz am Rhein
Urbacher Weg 19
51149 Köln
Phone: ++ 49/22 03/5 66 13 60
Fax: ++ 49/22 03/5 66 13 89
Email: pmbansmann@gmx.de