Semin Musculoskelet Radiol 2008; 12(4): 283-301
DOI: 10.1055/s-0028-1100637
© Thieme Medical Publishers

Imaging of Articular Cartilage Injuries of the Lower Extremity

Carl S. Winalski1 , Leyla Alparslan2
  • 1Imaging Institute, Cleveland Clinic, Cleveland, Ohio
  • 2Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
Further Information

Publication History

Publication Date:
18 November 2008 (online)

ABSTRACT

Imaging has become an important clinical tool in the evaluation of articular cartilage, both in the clinical and research setting. This article reviews the mechanisms of articular cartilage injury in the lower extremities and their implications. Specific examples of acute and chronic repetitive injuries in the hip, knee, and ankle are used to demonstrate the characteristics of articular cartilage lesions on magnetic resonance imaging and multidetector computed tomographic arthrography. Loss of meniscal function in the knee and femoroacetabular impingement in the hip represent sources of repetitive cartilage injury that predispose the joint to osteoarthritis. Acute cartilage injury is exemplified by osteochondral lesions of the talus, which may result in post-traumatic osteoarthritis. Recognition of early cartilage damage and associated lesions may help determine the proper treatment for the patient to delay or prevent progression to osteoarthritis.

REFERENCES

  • 1 Hjelle K, Solheim E, Strand T, Muri R, Brittberg M. Articular cartilage defects in 1,000 knee arthroscopies.  Arthroscopy. 2002;  18(7) 730-734
  • 2 Johnson D L, Urban Jr W P, Caborn D N, Vanarthos W J, Carlson C S. Articular cartilage changes seen with magnetic resonance imaging-detected bone bruises associated with acute anterior cruciate ligament rupture.  Am J Sports Med. 1998;  26(3) 409-414
  • 3 Cobby M J, Schweitzer M E, Resnick D. The deep lateral femoral notch: an indirect sign of a torn anterior cruciate ligament.  Radiology. 1992;  184(3) 855-858
  • 4 Levy A S, Lohnes J, Sculley S, LeCroy M, Garrett W. Chondral delamination of the knee in soccer players.  Am J Sports Med. 1996;  24(5) 634-639
  • 5 Buckwalter J A, Mankin H J. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation.  Instr Course Lect. 1998;  47 487-504
  • 6 Shelbourne K D, Jari S, Gray T. Outcome of untreated traumatic articular cartilage defects of the knee: a natural history study.  J Bone Joint Surg Am. 2003;  85-A(suppl 2) 8-16
  • 7 Biswal S, Hastie T, Andriacchi T P et al.. Risk factors for progressive cartilage loss in the knee: a longitudinal magnetic resonance imaging study in forty-three patients.  Arthritis Rheum. 2002;  46(11) 2884-2892
  • 8 Phan C M, Link T M, Blumenkrantz G et al.. MR imaging findings in the follow-up of patients with different stages of knee osteoarthritis and the correlation with clinical symptoms.  Eur Radiol. 2006;  16(3) 608-618
  • 9 Ding C, Cicuttini F, Scott F, Boon C, Jones G. Association of prevalent and incident knee cartilage defects with loss of tibial and patellar cartilage: a longitudinal study.  Arthritis Rheum. 2005;  52(12) 3918-3927
  • 10 Wang Y, Ding C, Wluka A E et al.. Factors affecting progression of knee cartilage defects in normal subjects over 2 years.  Rheumatology (Oxford). 2006;  45(1) 79-84
  • 11 Cicuttini F, Ding C, Wluka A et al.. Association of cartilage defects with loss of knee cartilage in healthy, middle-age adults: a prospective study.  Arthritis Rheum. 2005;  52(7) 2033-2039
  • 12 Outerbridge R E. The etiology of chondromalacia patellae.  J Bone Joint Surg Br. 1961;  43-B 752-757
  • 13 Wluka A E, Ding C, Jones G, Cicuttini F M. The clinical correlates of articular cartilage defects in symptomatic knee osteoarthritis: a prospective study.  Rheumatology (Oxford). 2005;  44(10) 1311-1316
  • 14 Minas T, Nehrer S. Current concepts in the treatment of articular cartilage defects.  Orthopedics. 1997;  20(6) 525-538
  • 15 Lee S J, Aadalen K J, Malaviya P et al.. Tibiofemoral contact mechanics after serial medial meniscectomies in the human cadaveric knee.  Am J Sports Med. 2006;  34(8) 1334-1344
  • 16 McDermott I D, Amis A A. The consequences of meniscectomy.  J Bone Joint Surg Br. 2006;  88(12) 1549-1556
  • 17 Shrive N G, O'Connor J J, Goodfellow J W. Load-bearing in the knee joint.  Clin Orthop Relat Res. 1978;  (131) 279-287
  • 18 Roos E M, Ostenberg A, Roos H, Ekdahl C, Lohmander L S. Long-term outcome of meniscectomy: symptoms, function, and performance tests in patients with or without radiographic osteoarthritis compared to matched controls.  Osteoarthritis Cartilage. 2001;  9(4) 316-324
  • 19 McNicholas M J, Rowley D I, McGurty D et al.. Total meniscectomy in adolescence. A thirty-year follow-up.  J Bone Joint Surg Br. 2000;  82(2) 217-221
  • 20 Englund M, Roos E M, Roos H P, Lohmander L S. Patient-relevant outcomes fourteen years after meniscectomy: influence of type of meniscal tear and size of resection.  Rheumatology (Oxford). 2001;  40(6) 631-639
  • 21 Cicuttini F M, Forbes A, Yuanyuan W, Rush G, Stuckey S L. Rate of knee cartilage loss after partial meniscectomy.  J Rheumatol. 2002;  29(9) 1954-1956
  • 22 Baratz M E, Fu F H, Mengato R. Meniscal tears: the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee. A preliminary report.  Am J Sports Med. 1986;  14(4) 270-275
  • 23 Ahmed A M, Burke D L. In-vitro measurement of static pressure distribution in synovial joints—Part I: Tibial surface of the knee.  J Biomech Eng. 1983;  105(3) 216-225
  • 24 Ihn J C, Kim S J, Park I H. In vitro study of contact area and pressure distribution in the human knee after partial and total meniscectomy.  Int Orthop. 1993;  17(4) 214-218
  • 25 Pagnani M J, Cooper D E, Warren R F. Extrusion of the medial meniscus.  Arthroscopy. 1991;  7(3) 297-300
  • 26 Costa C R, Morrison W B, Carrino J A. Medial meniscus extrusion on knee MRI: is extent associated with severity of degeneration or type of tear?.  AJR Am J Roentgenol. 2004;  183(1) 17-23
  • 27 Hunter D J, Zhang Y Q, Tu X et al.. Change in joint space width: hyaline articular cartilage loss or alteration in meniscus?.  Arthritis Rheum. 2006;  54(8) 2488-2495
  • 28 Adams J G, McAlindon T, Dimasi M, Carey J, Eustace S. Contribution of meniscal extrusion and cartilage loss to joint space narrowing in osteoarthritis.  Clin Radiol. 1999;  54(8) 502-506
  • 29 Breitenseher M J, Trattnig S, Dobrocky I et al.. MR imaging of meniscal subluxation in the knee.  Acta Radiol. 1997;  38(5) 876-879
  • 30 Gale D R, Chaisson C E, Totterman S M et al.. Meniscal subluxation: association with osteoarthritis and joint space narrowing.  Osteoarthritis Cartilage. 1999;  7(6) 526-532
  • 31 Berthiaume M J, Raynauld J P, Martel-Pelletier J et al.. Meniscal tear and extrusion are strongly associated with progression of symptomatic knee osteoarthritis as assessed by quantitative magnetic resonance imaging.  Ann Rheum Dis. 2005;  64(4) 556-563
  • 32 Rennie W J, Finlay D B. Meniscal extrusion in young athletes: associated knee joint abnormalities.  AJR Am J Roentgenol. 2006;  186(3) 791-794
  • 33 Puig L, Monllau J C, Corrales M et al.. Factors affecting meniscal extrusion: correlation with MRI, clinical, and arthroscopic findings.  Knee Surg Sports Traumatol Arthrosc. 2006;  14(4) 394-398
  • 34 Tannast M, Siebenrock K A, Anderson S E. Femoroacetabular impingement: radiographic diagnosis—what the radiologist should know.  AJR Am J Roentgenol. 2007;  188(6) 1540-1552
  • 35 Buckwalter J A, Saltzman C, Brown T. The impact of osteoarthritis: implications for research.  Clin Orthop Relat Res. 2004;  (427, Suppl) S6-S15
  • 36 Bredella M A, Stoller D W. MR imaging of femoroacetabular impingement.  Magn Reson Imaging Clin N Am. 2005;  13(4) 653-664
  • 37 Ganz R, Parvizi J, Beck M et al.. Femoroacetabular impingement: a cause for osteoarthritis of the hip.  Clin Orthop Relat Res. 2003;  (417) 112-120
  • 38 Manaster B J, Zakel S. Imaging of femoral acetabular impingement syndrome.  Clin Sports Med. 2006;  25(4) 635-657
  • 39 Harris W H. Etiology of osteoarthritis of the hip.  Clin Orthop Relat Res. 1986;  (213) 20-33
  • 40 Goodman D A, Feighan J E, Smith A D et al.. Subclinical slipped capital femoral epiphysis. Relationship to osteoarthrosis of the hip.  J Bone Joint Surg Am. 1997;  79(10) 1489-1497
  • 41 Siebenrock K A, Wahab K H, Werlen S et al.. Abnormal extension of the femoral head epiphysis as a cause of cam impingement.  Clin Orthop Relat Res. 2004;  (418) 54-60
  • 42 Leunig M, Casillas M M, Hamlet M et al.. Slipped capital femoral epiphysis: early mechanical damage to the acetabular cartilage by a prominent femoral metaphysis.  Acta Orthop Scand. 2000;  71(4) 370-375
  • 43 Pfirrmann C WA, Petersilge C A. Imaging of the painful hip and pelvis. In: Hodler J, Zollikofer ChL, von Schulthess GK Musculoskeletal Diseases and Interventional Techniques. 37th International Diagnostic Course in Davos (IDKD). Springer, Milan 2005
  • 44 Reynolds D, Lucas J, Klaue K. Retroversion of the acetabulum. A cause of hip pain.  J Bone Joint Surg Br. 1999;  81(2) 281-288
  • 45 Beck M, Kalhor M, Leunig M, Ganz R. Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip.  J Bone Joint Surg Br. 2005;  87(7) 1012-1018
  • 46 Tanzer M, Noiseux N. Osseous abnormalities and early osteoarthritis: the role of hip impingement.  Clin Orthop Relat Res. 2004;  (429) 170-177
  • 47 Clohisy J C, Nunley R M, Otto R J, Schoenecker P L. The frog-leg lateral radiograph accurately visualized hip cam impingement abnormalities.  Clin Orthop Relat Res. 2007;  462 115-121
  • 48 Meyer D C, Beck M, Ellis T, Ganz R, Leunig M. Comparison of six radiographic projections to assess femoral head/neck asphericity.  Clin Orthop Relat Res. 2006;  445 181-185
  • 49 Beall D P, Sweet C F, Martin H D et al.. Imaging findings of femoroacetabular impingement syndrome.  Skeletal Radiol. 2005;  34(11) 691-701
  • 50 Blankenbaker D G, Tuite M J. The painful hip: new concepts.  Skeletal Radiol. 2006;  35(6) 352-370
  • 51 Pitt M J, Graham A R, Shipman J H, Birkby W. Herniation pit of the femoral neck.  AJR Am J Roentgenol. 1982;  138(6) 1115-1121
  • 52 Leunig M, Beck M, Kalhor M et al.. Fibrocystic changes at anterosuperior femoral neck: prevalence in hips with femoroacetabular impingement.  Radiology. 2005;  236(1) 237-246
  • 53 Kassarjian A, Yoon L S, Belzile E et al.. Triad of MR arthrographic findings in patients with cam-type femoroacetabular impingement.  Radiology. 2005;  236(2) 588-592
  • 54 Notzli H P, Wyss T F, Stoecklin C H et al.. The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement.  J Bone Joint Surg Br. 2002;  84(4) 556-560
  • 55 Davis K, Cabay M, Blankenbaker D, Mukerjhee R. The femoro-acetabular impingement alpha angle: how reliable is it? Presented at the 30th Annual Meeting of the Society of Skeletal Radiology, Orlando, FL.  Skeletal Radiol. 2007;  36 357-358
  • 56 Crawford J R, Villar R N. Current concepts in the management of femoroacetabular impingement.  J Bone Joint Surg Br. 2005;  87(11) 1459-1462
  • 57 Murphy S, Tannast M, Kim Y J, Buly R, Millis M B. Debridement of the adult hip for femoroacetabular impingement: indications and preliminary clinical results.  Clin Orthop Relat Res. 2004;  (429) 178-181
  • 58 Siebenrock K A, Schoeniger R, Ganz R. Anterior femoro-acetabular impingement due to acetabular retroversion. Treatment with periacetabular osteotomy.  J Bone Joint Surg Am. 2003;  85-A(2) 278-286
  • 59 Mardones R M, Gonzalez C, Chen Q et al.. Surgical treatment of femoroacetabular impingement: evaluation of the effect of the size of the resection. Surgical technique.  J Bone Joint Surg Am. 2006;  88(Suppl 1 Pt 1) 84-91
  • 60 Espinosa N, Rothenfluh D A, Beck M, Ganz R, Leunig M. Treatment of femoro-acetabular impingement: preliminary results of labral refixation.  J Bone Joint Surg Am. 2006;  88(5) 925-935
  • 61 Crawford K, Philippon M J, Sekiya J K, Rodkey W G, Steadman J R. Microfracture of the hip in athletes.  Clin Sports Med. 2006;  25(2) 327-335
  • 62 Buckwalter J A. Articular cartilage injuries.  Clin Orthop Relat Res. 2002;  (402) 21-37
  • 63 Ateshian G A, Lai W M, Zhu W B, Mow V C. An asymptotic solution for the contact of two biphasic cartilage layers.  J Biomech. 1994;  27(11) 1347-1360
  • 64 Mow V C, Ratcliffe A. Structure and function of articular cartilage and meniscus. In: Mow VC, Hayes WC Basic Orthopedic Biomechanics. 2nd ed. Philadelphia, Pa; Lippincott-Raven 1997: 113-177
  • 65 Thompson Jr R C, Oegema Jr T R, Lewis J L, Wallace L. Osteoarthrotic changes after acute transarticular load. An animal model.  J Bone Joint Surg Am. 1991;  73(7) 990-1001
  • 66 Hopkinson W J, Mitchell W A, Curl W W. Chondral fractures of the knee. Cause for confusion.  Am J Sports Med. 1985;  13(5) 309-312
  • 67 Potter H G, Linklater J M, Allen A A, Hannafin J A, Haas S B. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging.  J Bone Joint Surg Am. 1998;  80(9) 1276-1284
  • 68 Disler D G, McCauley T R, Wirth C R, Fuchs M D. Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging: comparison with standard MR imaging and correlation with arthroscopy.  AJR Am J Roentgenol. 1995;  165(2) 377-382
  • 69 Bredella M A, Tirman P F, Peterfy C G et al.. Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients.  AJR Am J Roentgenol. 1999;  172(4) 1073-1080
  • 70 Kawahara Y, Uetani M, Nakahara N et al.. Fast spin-echo MR of the articular cartilage in the osteoarthrotic knee. Correlation of MR and arthroscopic findings.  Acta Radiol. 1998;  39(2) 120-125
  • 71 Gagliardi J A, Chung E M, Chandnani V P et al.. Detection and staging of chondromalacia patellae: relative efficacies of conventional MR imaging, MR arthrography, and CT arthrography.  AJR Am J Roentgenol. 1994;  163(3) 629-636
  • 72 Recht M P, Piraino D W, Paletta G A, Schils J P, Belhobek G H. Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities.  Radiology. 1996;  198(1) 209-212
  • 73 Disler D G, McCauley T R, Kelman C G et al.. Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy.  AJR Am J Roentgenol. 1996;  167(1) 127-132
  • 74 Burstein D, Gray M. New MRI techniques for imaging cartilage.  J Bone Joint Surg Am. 2003;  85-A(Suppl 2) 70-77
  • 75 Burstein D, Gray M L. Is MRI fulfilling its promise for molecular imaging of cartilage in arthritis?.  Osteoarthritis Cartilage. 2006;  14(11) 1087-1090
  • 76 Wheaton A J, Casey F L, Gougoutas A J et al.. Correlation of T1rho with fixed charge density in cartilage.  J Magn Reson Imaging. 2004;  20(3) 519-525
  • 77 Regatte R R, Akella S V, Lonner J H, Kneeland J B, Reddy R. T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2.  J Magn Reson Imaging. 2006;  23(4) 547-553
  • 78 Mosher T J, Dardzinski B J, Smith M B. Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2—preliminary findings at 3 T.  Radiology. 2000;  214(1) 259-266
  • 79 Mosher T J, Dardzinski B J. Cartilage MRI T2 relaxation time mapping: overview and applications.  Semin Musculoskelet Radiol. 2004;  8(4) 355-368
  • 80 Watanabe A, Wada Y, Obata T et al.. Delayed gadolinium-enhanced MR to determine glycosaminoglycan concentration in reparative cartilage after autologous chondrocyte implantation: preliminary results.  Radiology. 2006;  239(1) 201-208
  • 81 Bashir A, Gray M L, Hartke J, Burstein D. Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI.  Magn Reson Med. 1999;  41(5) 857-865
  • 82 Burstein D, Velyvis J, Scott K T et al.. Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage.  Magn Reson Med. 2001;  45(1) 36-41
  • 83 Tiderius C J, Olsson L E, de Verdier H et al.. Gd-DTPA2)-enhanced MRI of femoral knee cartilage: a dose-response study in healthy volunteers.  Magn Reson Med. 2001;  46(6) 1067-1071
  • 84 Bashir A, Gray M L, Boutin R D, Burstein D. Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging.  Radiology. 1997;  205(2) 551-558
  • 85 Johannessen W, Auerbach J D, Wheaton A J et al.. Assessment of human disc degeneration and proteoglycan content using T1rho-weighted magnetic resonance imaging.  Spine. 2006;  31(11) 1253-1257
  • 86 Wheaton A J, Borthakur A, Corbo M, Charagundla S R, Reddy R. Method for reduced SAR T1rho-weighted MRI.  Magn Reson Med. 2004;  51(6) 1096-1102
  • 87 Duvvuri U, Kudchodkar S, Reddy R, Leigh J S. T1(rho) relaxation can assess longitudinal proteoglycan loss from articular cartilage in vitro.  Osteoarthritis Cartilage. 2002;  10(11) 838-844
  • 88 Duvvuri U, Reddy R, Patel S D et al.. T1rho-relaxation in articular cartilage: effects of enzymatic degradation.  Magn Reson Med. 1997;  38(6) 863-867
  • 89 Duvvuri U, Charagundla S R, Kudchodkar S B et al.. Human knee: in vivo T1(rho)-weighted MR imaging at 1.5 T—preliminary experience.  Radiology. 2001;  220(3) 822-826
  • 90 Menezes N M, Gray M L, Hartke J R, Burstein D. T2 and T1rho MRI in articular cartilage systems.  Magn Reson Med. 2004;  51(3) 503-509
  • 91 Goodwin D W, Zhu H, Dunn J F. In vitro MR imaging of hyaline cartilage: correlation with scanning electron microscopy.  AJR Am J Roentgenol. 2000;  174(2) 405-409
  • 92 Xia Y, Moody J B, Burton-Wurster N, Lust G. Quantitative in situ correlation between microscopic MRI and polarized light microscopy studies of articular cartilage.  Osteoarthritis Cartilage. 2001;  9(5) 393-406
  • 93 Xia Y, Moody J B, Alhadlaq H. Orientational dependence of T2 relaxation in articular cartilage: a microscopic MRI (microMRI) study.  Magn Reson Med. 2002;  48(3) 460-469
  • 94 White L M, Sussman M S, Hurtig M et al.. Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects.  Radiology. 2006;  241(2) 407-414
  • 95 Erickson S J, Prost R W, Timins M E. The “magic angle” effect: background physics and clinical relevance.  Radiology. 1993;  188(1) 23-25
  • 96 Dunn T C, Lu Y, Jin H, Ries M D, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis.  Radiology. 2004;  232(2) 592-598
  • 97 Ayral X, Dougados M, Listrat V et al.. Arthroscopic evaluation of chondropathy in osteoarthritis of the knee.  J Rheumatol. 1996;  23(4) 698-706
  • 98 Brittberg M, Winalski C S. Evaluation of cartilage injuries and repair.  J Bone Joint Surg Am. 2003;  85-A(Suppl 2) 58-69
  • 99 Noyes F R, Stabler C L. A system for grading articular cartilage lesions at arthroscopy.  Am J Sports Med. 1989;  17(4) 505-513
  • 100 Bauer M, Jackson R W. Chondral lesions of the femoral condyles: a system of arthroscopic classification.  Arthroscopy. 1988;  4(2) 97-102
  • 101 Winalski C S, Gupta K B. Magnetic resonance imaging of focal articular cartilage lesions.  Top Magn Reson Imaging. 2003;  14(2) 131-144
  • 102 Minas T. A practical algorithm for cartilage repair.  Oper Tech Sports Med. 2000;  8(2) 141-143
  • 103 Azer N M, Winalski C S, Minas T. MR imaging for surgical planning and postoperative assessment in early osteoarthritis.  Radiol Clin North Am. 2004;  42(1) 43-60
  • 104 Lee K Y, Dunn T C, Steinbach L S et al.. Computer-aided quantification of focal cartilage lesions of osteoarthritic knee using MRI.  Magn Reson Imaging. 2004;  22(8) 1105-1115
  • 105 Beaule P E, Zaragoza E, Copelan N. Magnetic resonance imaging with gadolinium arthrography to assess acetabular cartilage delamination. A report of four cases.  J Bone Joint Surg Am. 2004;  86-A(10) 2294-2298
  • 106 Kendell S D, Helms C A, Rampton J W, Garrett W E, Higgins L D. MRI appearance of chondral delamination injuries of the knee.  AJR Am J Roentgenol. 2005;  184(5) 1486-1489
  • 107 Rubin D A, Harner C D, Costello J M. Treatable chondral injuries in the knee: frequency of associated focal subchondral edema.  AJR Am J Roentgenol. 2000;  174(4) 1099-1106
  • 108 Felson D T, McLaughlin S, Goggins J et al.. Bone marrow edema and its relation to progression of knee osteoarthritis.  Ann Intern Med. 2003;  139(5 Pt 1) 330-336
  • 109 Hunter D J, Zhang Y, Niu J et al.. Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis.  Arthritis Rheum. 2006;  54(5) 1529-1535
  • 110 Carrino J A, Blum J, Parellada J A, Schweitzer M E, Morrison W B. MRI of bone marrow edema-like signal in the pathogenesis of subchondral cysts.  Osteoarthritis Cartilage. 2006;  14(10) 1081-1085
  • 111 Moser T, Dosch J C, Moussaoui A, Dietemann J L. Wrist ligament tears: evaluation of MRI and combined MDCT and MR arthrography.  AJR Am J Roentgenol. 2007;  188(5) 1278-1286
  • 112 Vande Berg B C, Lecouvet F E, Poilvache P et al.. Assessment of knee cartilage in cadavers with dual-detector spiral CT arthrography and MR imaging.  Radiology. 2002;  222(2) 430-436
  • 113 El-Khoury G Y, Alliman K J, Lundberg H J et al.. Cartilage thickness in cadaveric ankles: measurement with double-contrast multi-detector row CT arthrography versus MR imaging.  Radiology. 2004;  233(3) 768-773
  • 114 Waldt S, Bruegel M, Ganter K et al.. Comparison of multislice CT arthrography and MR arthrography for the detection of articular cartilage lesions of the elbow.  Eur Radiol. 2005;  15(4) 784-791
  • 115 Anderson A E, Ellis B J, Peters C L, Weiss J A. Cartilage thickness: factors influencing multidetector CT measurements in a phantom study.  Radiology. 2008;  246(1) 133-141
  • 116 Vande Berg B C, Lecouvet F E, Maldague B, Malghem J. MR appearance of cartilage defects of the knee: preliminary results of a spiral CT arthrography-guided analysis.  Eur Radiol. 2004;  14(2) 208-214
  • 117 Schmid M R, Pfirrmann C W, Hodler J, Vienne P, Zanetti M. Cartilage lesions in the ankle joint: comparison of MR arthrography and CT arthrography.  Skeletal Radiol. 2003;  32(5) 259-265
  • 118 Nishii T, Tanaka H, Nakanishi K et al.. Fat-suppressed 3D spoiled gradient-echo MRI and MDCT arthrography of articular cartilage in patients with hip dysplasia.  AJR Am J Roentgenol. 2005;  185(2) 379-385
  • 119 Nishii T, Tanaka H, Sugano N et al.. Disorders of acetabular labrum and articular cartilage in hip dysplasia: evaluation using isotropic high-resolutional CT arthrography with sequential radial reformation.  Osteoarthritis Cartilage. 2007;  15(3) 251-257
  • 120 Ferkel R D. Osteochondral lesions of the talus. In: Ferkel RD, Whipple TL, Brust SE Arthroscopic surgery: The Foot and Ankle. Philadelphia; Lippincott Williams and Wilkins 1996: 145-170
  • 121 Stone J W, Guhl J F. Diagnostic arthroscopy of the ankle. In: Andrew JR, Timmerman LA Diagnostic and Operative Arthroscopy. Philadelphia, Pa; WB Saunders 1997: 423-456
  • 122 Canale S T, Belding R H. Osteochondral lesions of the talus.  J Bone Joint Surg Am. 1980;  62(1) 97-102
  • 123 Bosien W R, Staples O S, Russell S W. Residual disability following acute ankle sprains.  J Bone Joint Surg Am. 1955;  37-A(6) 1237-1243
  • 124 Chen D S, Wertheimer S J. Centrally located osteochondral fracture of the talus.  J Foot Surg. 1992;  31(2) 134-140
  • 125 Labovitz J M, Schweitzer M E. Occult osseous injuries after ankle sprains: incidence, location, pattern, and age.  Foot Ankle Int. 1998;  19(10) 661-667
  • 126 Sijbrandij E S, van Gils A P, Louwerens J W, de Lange E E. Posttraumatic subchondral bone contusions and fractures of the talotibial joint: occurrence of “kissing” lesions.  AJR Am J Roentgenol. 2000;  175(6) 1707-1710
  • 127 Baums M H, Heidrich G, Schultz W et al.. Autologous chondrocyte transplantation for treating cartilage defects of the talus.  J Bone Joint Surg Am. 2006;  88(2) 303-308
  • 128 Gobbi A, Francisco R A, Lubowitz J H, Allegra F, Canata G. Osteochondral lesions of the talus: randomized controlled trial comparing chondroplasty, microfracture, and osteochondral autograft transplantation.  Arthroscopy. 2006;  22(10) 1085-1092
  • 129 Hangody L, Fules P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience.  J Bone Joint Surg Am. 2003;  85-A(Suppl 2) 25-32
  • 130 Lahm A, Erggelet C, Steinwachs M, Reichelt A. Arthroscopic management of osteochondral lesions of the talus: results of drilling and usefulness of magnetic resonance imaging before and after treatment.  Arthroscopy. 2000;  16(3) 299-304
  • 131 Nelson S C, Haycock D M. Arthroscopy-assisted retrograde drilling of osteochondral lesions of the talar dome.  J Am Podiatr Med Assoc. 2005;  95(1) 91-96
  • 132 Berndt A L, Harty M. Transchondral fractures (osteochondritis dissecans) of the talus.  J Bone Joint Surg Am. 1959;  41A 998-1020
  • 133 Anderson I F, Crichton K J, Grattan-Smith T, Cooper R A, Brazier D. Osteochondral fractures of the dome of the talus.  J Bone Joint Surg Am. 1989;  71(8) 1143-1152
  • 134 Hepple S, Winson I G, Glew D. Osteochondral lesions of the talus: a revised classification.  Foot Ankle Int. 1999;  20(12) 789-793
  • 135 Mintz D N, Tashjian G S, Connell D A et al.. Osteochondral lesions of the talus: a new magnetic resonance grading system with arthroscopic correlation.  Arthroscopy. 2003;  19(4) 353-359
  • 136 Zinman C, Wolfson N, Reis N D. Osteochondritis dissecans of the dome of the talus. Computed tomography scanning in diagnosis and follow-up.  J Bone Joint Surg Am. 1988;  70(7) 1017-1019
  • 137 Cheng M S, Ferkel R D, Applegate G R. Osteochondral lesions of the talus: a radiologic and surgical comparison. Presented at the annual meeting of the American Academy of Orthopaedic Surgeons New Orleans 1995
  • 138 Beltran J, Shankman S. MR imaging of bone lesions of the ankle and foot.  Magn Reson Imaging Clin N Am. 2001;  9(3) 553-566
  • 139 Dipaola J D, Nelson D W, Colville M R. Characterizing osteochondral lesions by magnetic resonance imaging.  Arthroscopy. 1991;  7(1) 101-104
  • 140 De Smet A A, Ilahi O A, Graf B K. Reassessment of the MR criteria for stability of osteochondritis dissecans in the knee and ankle.  Skeletal Radiol. 1996;  25(2) 159-163
  • 141 O'Connor M A, Palaniappan M, Khan N, Bruce C E. Osteochondritis dissecans of the knee in children. A comparison of MRI and arthroscopic findings.  J Bone Joint Surg Br. 2002;  84(2) 258-262
  • 142 Kijowski R, De Smet A, Blankenbaker D. Magnetic resonance imaging (MRI) criteria for stability and instability in patients with juvenile and adult osteochondritis dissecans (OCD) of the femoral condyles. Paper presented at the 92nd Scientific Assembly and Annual Meeting of the Radiological Society of North America, Chicago 2006
  • 143 Kramer J, Stiglbauer R, Engel A, Prayer L, Imhof H. MR contrast arthrography (MRA) in osteochondrosis dissecans.  J Comput Assist Tomogr. 1992;  16(2) 254-260
  • 144 Miller T T, Bucchieri J S, Joshi A, Staron R B, Feldman F. Pseudodefect of the talar dome: an anatomic pitfall of ankle MR imaging.  Radiology. 1997;  203(3) 857-858
  • 145 Rosenberg Z S, Mellado J. Central pseudodefect of the talus: a potential ankle MR interpretation pitfall.  J Comput Assist Tomogr. 1999;  23(5) 718-720

Carl S WinalskiM.D. 

Imaging Institute, Crile Bldg., A-21, Cleveland Clinic

9500 Euclid Ave., Cleveland, OH 44195

Email: winalsc@ccf.org

    >